|
|
|
Carlos Alfonso Zafra-Mejía, Hugo Alexander Rondón-Quintana and Carlos Felipe Urazán-Bonells
The objective of this paper is to use autoregressive, integrated, and moving average (ARIMA) and transfer function ARIMA (TFARIMA) models to analyze the behavior of the main water quality parameters in the initial components of a drinking water supply sy...
ver más
|
|
|
|
|
|
|
Eunju Hwang
Daily data on COVID-19 infections and deaths tend to possess weekly oscillations. The purpose of this work is to forecast COVID-19 data with partially cyclical fluctuations. A partially periodic oscillating ARIMA model is suggested to enhance the predict...
ver más
|
|
|
|
|
|
|
Konstantinos P. Fourkiotis and Athanasios Tsadiras
In today?s evolving global world, the pharmaceutical sector faces an emerging challenge, which is the rapid surge of the global population and the consequent growth in drug production demands. Recognizing this, our study explores the urgent need to stren...
ver más
|
|
|
|
|
|
|
C. Tamilselvi, Md Yeasin, Ranjit Kumar Paul and Amrit Kumar Paul
Denoising is an integral part of the data pre-processing pipeline that often works in conjunction with model development for enhancing the quality of data, improving model accuracy, preventing overfitting, and contributing to the overall robustness of pr...
ver más
|
|
|
|
|
|
|
Wen Tian, Yining Zhang, Ying Zhang, Haiyan Chen and Weidong Liu
To fully leverage the spatiotemporal dynamic correlations in air traffic flow and enhance the accuracy of traffic flow prediction models, thereby providing a more precise basis for perceiving congestion situations in the air route network, a study was co...
ver más
|
|
|
|
|
|
|
Yoga Sasmita, Heri Kuswanto and Dedy Dwi Prastyo
Standard time-series modeling requires the stability of model parameters over time. The instability of model parameters is often caused by structural breaks, leading to the formation of nonlinear models. A state-dependent model (SDM) is a more general an...
ver más
|
|
|
|
|
|
|
Elena Pagano and Enrico Barbierato
Air pollution is a paramount issue, influenced by a combination of natural and anthropogenic sources, various diffusion modes, and profound repercussions for the environment and human health. Herein, the power of time series data becomes evident, as it p...
ver más
|
|
|
|
|
|
|
Chi Han, Wei Xiong and Ronghuan Yu
Mega-constellation network traffic forecasting provides key information for routing and resource allocation, which is of great significance to the performance of satellite networks. However, due to the self-similarity and long-range dependence (LRD) of m...
ver más
|
|
|
|
|
|
|
Aymane Ahajjam, Jaakko Putkonen, Emmanuel Chukwuemeka, Robert Chance and Timothy J. Pasch
Local weather forecasts in the Arctic outside of settlements are challenging due to the dearth of ground-level observation stations and high computational costs. During winter, these forecasts are critical to help prepare for potentially hazardous weathe...
ver más
|
|
|
|
|
|
|
Chang Guo, Jianfeng Zhu and Xiaoming Wang
In recent years, the rapid growth of vehicles has imposed a significant burden on urban road resources. To alleviate urban traffic congestion in intelligent transportation systems (ITS), real-time and accurate traffic flow prediction has emerged as an ef...
ver más
|
|
|
|