90   Artículos

 
en línea
Mojtaba Nayyeri, Modjtaba Rouhani, Hadi Sadoghi Yazdi, Marko M. Mäkelä, Alaleh Maskooki and Yury Nikulin    
One of the main disadvantages of the traditional mean square error (MSE)-based constructive networks is their poor performance in the presence of non-Gaussian noises. In this paper, we propose a new incremental constructive network based on the correntro... ver más
Revista: Algorithms    Formato: Electrónico

 
en línea
Tatyana Aksenovich and Vasiliy Selivanov    
During geomagnetic storms, which are a result of solar wind?s interaction with the Earth?s magnetosphere, geomagnetically induced currents (GICs) begin to flow in the long, high-voltage electrical networks on the Earth?s surface. It causes a number of ne... ver más
Revista: Applied Sciences    Formato: Electrónico

 
en línea
Andrei Velichko, Maksim Belyaev, Yuriy Izotov, Murugappan Murugappan and Hanif Heidari    
Entropy measures are effective features for time series classification problems. Traditional entropy measures, such as Shannon entropy, use probability distribution function. However, for the effective separation of time series, new entropy estimation me... ver más
Revista: Algorithms    Formato: Electrónico

 
en línea
Jones Luís Schaefer, Paulo Roberto Tardio, Ismael Cristofer Baierle and Elpidio Oscar Benitez Nara    
The adoption of models based on key performance indicators to diagnose and evaluate the competitiveness of companies has been presented as a trend in the operations? management. These models are structured with different variables in complex interrelatio... ver más
Revista: Administrative Sciences    Formato: Electrónico

 
en línea
Jianhe Li and Suohai Fan    
In recent years, graph neural networks (GNNs) have played an important role in graph representation learning and have successfully achieved excellent results in semi-supervised classification. However, these GNNs often neglect the global smoothing of the... ver más
Revista: Algorithms    Formato: Electrónico

 
en línea
George Tzougas and Konstantin Kutzkov    
We developed a methodology for the neural network boosting of logistic regression aimed at learning an additional model structure from the data. In particular, we constructed two classes of neural network-based models: shallow?dense neural networks with ... ver más
Revista: Algorithms    Formato: Electrónico

 
en línea
Wen-Chang Cheng, Hung-Chou Hsiao, Yung-Fa Huang and Li-Hua Li    
This research proposes a single network model architecture for mask face recognition using the FaceNet training method. Three pre-trained convolutional neural networks of different sizes are combined, namely InceptionResNetV2, InceptionV3, and MobileNetV... ver más
Revista: Information    Formato: Electrónico

 
en línea
Jinting Zhu, Julian Jang-Jaccard, Amardeep Singh, Paul A. Watters and Seyit Camtepe    
Malware authors apply different techniques of control flow obfuscation, in order to create new malware variants to avoid detection. Existing Siamese neural network (SNN)-based malware detection methods fail to correctly classify different malware familie... ver más
Revista: Future Internet    Formato: Electrónico

 
en línea
Ernesto Cadena Muñoz, Gustavo Chica Pedraza, Rafael Cubillos-Sánchez, Alexander Aponte-Moreno and Mónica Espinosa Buitrago    
The primary user emulation (PUE) attack is one of the strongest attacks in mobile cognitive radio networks (MCRN) because the primary users (PU) and secondary users (SU) are unable to communicate if a malicious user (MU) is present. In the literature, so... ver más
Revista: Future Internet    Formato: Electrónico

 
en línea
Saige Lv and Xiong Hu    
In order to solve the problems of subjectivity in the extraction of traditional degradation features and incomplete degradation information contained in a single sensor signal, a performance degradation assessment and abnormal health status detection met... ver más
Revista: Journal of Marine Science and Engineering    Formato: Electrónico

« Anterior     Página: 1 de 6     Siguiente »