28   Artículos

 
en línea
Ancilon Leuch Alencar, Marcelo Dornbusch Lopes, Anita Maria da Rocha Fernandes, Julio Cesar Santos dos Anjos, Juan Francisco De Paz Santana and Valderi Reis Quietinho Leithardt    
In the current era of social media, the proliferation of images sourced from unreliable origins underscores the pressing need for robust methods to detect forged content, particularly amidst the rapid evolution of image manipulation technologies. Existin... ver más
Revista: Future Internet    Formato: Electrónico

 
en línea
José Felix Zapata Usandivaras, Annafederica Urbano, Michael Bauerheim and Bénédicte Cuenot    
Improving the predictive capabilities of reduced-order models for the design of injector and chamber elements of rocket engines could greatly improve the quality of early rocket chamber designs. In the present work, we propose an innovative methodology t... ver más
Revista: Aerospace    Formato: Electrónico

 
en línea
Xiao Han, Jing Peng, Tailai Peng, Rui Chen, Boyuan Hou, Xinran Xie and Zhe Cui    
It is always a hot issue in the intelligence analysis field to predict the trend of news description by pre-trained language models and graph neural networks. However, there are several problems in the existing research: (1) there are few Chinese data se... ver más
Revista: Applied Sciences    Formato: Electrónico

 
en línea
Sunghwan Moon    
Deep neural networks have shown very successful performance in a wide range of tasks, but a theory of why they work so well is in the early stage. Recently, the expressive power of neural networks, important for understanding deep learning, has received ... ver más
Revista: Applied Sciences    Formato: Electrónico

 
en línea
Girma Neshir, Andreas Rauber and Solomon Atnafu    
Topic Modeling is a statistical process, which derives the latent themes from extensive collections of text. Three approaches to topic modeling exist, namely, unsupervised, semi-supervised and supervised. In this work, we develop a supervised topic model... ver más
Revista: Information    Formato: Electrónico

 
en línea
Jing Zheng, Ziren Gao, Jingsong Ma, Jie Shen and Kang Zhang    
The selection of road networks is very important for cartographic generalization. Traditional artificial intelligence methods have improved selection efficiency but cannot fully extract the spatial features of road networks. However, current selection me... ver más
Revista: ISPRS International Journal of Geo-Information    Formato: Electrónico

 
en línea
The editor of this special issue on “Intelligent Control in Energy Systems” have made an attempt to publish a book containing original technical articles addressing various elements of intelligent control in energy systems. The response to ou... ver más
Revista: Energies    Formato: Electrónico

 
en línea
Igor Varfolomeev, Ivan Yakimchuk and Ilia Safonov    
Image segmentation is a crucial step of almost any Digital Rock workflow. In this paper, we propose an approach for generation of a labelled dataset and investigate an application of three popular convolutional neural networks (CNN) architectures for seg... ver más
Revista: Computers    Formato: Electrónico

 
en línea
Gabriel Dario Caffaratti, Martín Gonzalo Marchetta, Raymundo Quilez Forradellas     Pág. 16 - 38
Visual depth recognition through Stereo Matching is an active field of research due to the numerous applications in robotics, autonomous driving, user interfaces, etc. Multiple techniques have been developed in the last two decades to achieve accurate di... ver más
Revista: Inteligencia Artificial    Formato: Electrónico

 
en línea
Sanjiv R. Das, Karthik Mokashi and Robbie Culkin    
We examine the use of deep learning (neural networks) to predict the movement of the S&P 500 Index using past returns of all the stocks in the index. Our analysis finds that the future direction of the S&P 500 index can be weakly predicted by the... ver más
Revista: Algorithms    Formato: Electrónico

« Anterior     Página: 1 de 2     Siguiente »