|
|
|
Ji-Woon Lee and Hyun-Soo Kang
The escalating use of security cameras has resulted in a surge in images requiring analysis, a task hindered by the inefficiency and error-prone nature of manual monitoring. In response, this study delves into the domain of anomaly detection in CCTV secu...
ver más
|
|
|
|
|
|
|
Salman Ibne Eunus, Shahriar Hossain, A. E. M. Ridwan, Ashik Adnan, Md. Saiful Islam, Dewan Ziaul Karim, Golam Rabiul Alam and Jia Uddin
Accidents due to defective railway lines and derailments are common disasters that are observed frequently in Southeast Asian countries. It is imperative to run proper diagnosis over the detection of such faults to prevent such accidents. However, manual...
ver más
|
|
|
|
|
|
|
Mykhailo Lohachov, Ryoji Korei, Kazuo Oki, Koshi Yoshida, Issaku Azechi, Salem Ibrahim Salem and Nobuyuki Utsumi
This article investigates approaches for broccoli harvest time prediction through the application of various machine learning models. This study?s experiment is conducted on a commercial farm in Ecuador, and it integrates in situ weather and broccoli gro...
ver más
|
|
|
|
|
|
|
Ming-Yen Lin, Ping-Chun Wu and Sue-Chen Hsueh
This study introduces session-aware recommendation models, leveraging GRU (Gated Recurrent Unit) and attention mechanisms for advanced latent interaction data integration. A primary advancement is enhancing latent context, a critical factor for boosting ...
ver más
|
|
|
|
|
|
|
Mohammed Saïd Kasttet, Abdelouahid Lyhyaoui, Douae Zbakh, Adil Aramja and Abderazzek Kachkari
Recently, artificial intelligence and data science have witnessed dramatic progress and rapid growth, especially Automatic Speech Recognition (ASR) technology based on Hidden Markov Models (HMMs) and Deep Neural Networks (DNNs). Consequently, new end-to-...
ver más
|
|
|
|
|
|
|
Hyeon-Kyu Noh and Hong-June Park
A convolutional neural network (CNN) transducer decoder was proposed to reduce the decoding time of an end-to-end automatic speech recognition (ASR) system while maintaining accuracy. The CNN of 177 k parameters and a kernel size of 6 generates the proba...
ver más
|
|
|
|
|
|
|
Hao An, Ruotong Ma, Yuhan Yan, Tailai Chen, Yuchen Zhao, Pan Li, Jifeng Li, Xinyue Wang, Dongchen Fan and Chunli Lv
This paper aims to address the increasingly severe security threats in financial systems by proposing a novel financial attack detection model, Finsformer. This model integrates the advanced Transformer architecture with the innovative cluster-attention ...
ver más
|
|
|
|
|
|
|
Tianao Qin, Ruixin Chen, Rufu Qin and Yang Yu
Time series prediction is an effective tool for marine scientific research. The Hierarchical Temporal Memory (HTM) model has advantages over traditional recurrent neural network (RNN)-based models due to its online learning and prediction capabilities. G...
ver más
|
|
|
|
|
|
|
Benjamin Burrichter, Juliana Koltermann da Silva, Andre Niemann and Markus Quirmbach
This study employs a temporal fusion transformer (TFT) for predicting overflow from sewer manholes during heavy rainfall events. The TFT utilised is capable of forecasting overflow hydrographs at the manhole level and was tested on a sewer network with 9...
ver más
|
|
|
|
|
|
|
Weiying Wang and Toshihiro Osaragi
The generation and prediction of daily human mobility patterns have raised significant interest in many scientific disciplines. Using various data sources, previous studies have examined several deep learning frameworks, such as the RNN and GAN, to synth...
ver más
|
|
|
|