|
|
|
Ryota Higashimoto, Soh Yoshida and Mitsuji Muneyasu
This paper addresses the performance degradation of deep neural networks caused by learning with noisy labels. Recent research on this topic has exploited the memorization effect: networks fit data with clean labels during the early stages of learning an...
ver más
|
|
|
|
|
|
|
Yang Zhang, Yuan Feng, Shiqi Wang, Zhicheng Tang, Zhenduo Zhai, Reid Viegut, Lisa Webb, Andrew Raedeke and Yi Shang
Waterfowl populations monitoring is essential for wetland conservation. Lately, deep learning techniques have shown promising advancements in detecting waterfowl in aerial images. In this paper, we present performance evaluation of several popular superv...
ver más
|
|
|
|
|
|
|
Yugen Yi, Haoming Zhang, Ningyi Zhang, Wei Zhou, Xiaomei Huang, Gengsheng Xie and Caixia Zheng
As the feature dimension of data continues to expand, the task of selecting an optimal subset of features from a pool of limited labeled data and extensive unlabeled data becomes more and more challenging. In recent years, some semi-supervised feature se...
ver más
|
|
|
|
|
|
|
Kui Zeng, Shutan Xu, Daode Shu and Ming Chen
Medaka (Oryzias latipes), as a crucial model organism in biomedical research, holds significant importance in fields such as cardiovascular diseases. Currently, the analysis of the medaka ventricle relies primarily on visual observation under a microscop...
ver más
|
|
|
|
|
|
|
Jie Wang, Jie Yang, Jiafan He and Dongliang Peng
Semi-supervised learning has been proven to be effective in utilizing unlabeled samples to mitigate the problem of limited labeled data. Traditional semi-supervised learning methods generate pseudo-labels for unlabeled samples and train the classifier us...
ver más
|
|
|
|
|
|
|
Xuefeng Zhang, Youngsung Kim, Young-Chul Chung, Sangcheol Yoon, Sang-Yong Rhee and Yong Soo Kim
Large-scale datasets, which have sufficient and identical quantities of data in each class, are the main factor in the success of deep-learning-based classification models for vision tasks. A shortage of sufficient data and interclass imbalanced data dis...
ver más
|
|
|
|
|
|
|
Zohreh Madhoushi, Abdul Razak Hamdan and Suhaila Zainudin
Advancements in text representation have produced many deep language models (LMs), such as Word2Vec and recurrent-based LMs. However, there are scarce works that focus on detecting implicit sentiments with a small amount of labelled data because there ar...
ver más
|
|
|
|
|
|
|
Yuansheng Dai, Yingyi Liu, Haoyu Song, Bing He, Haiwen Yuan and Boyang Zhang
Classification tasks are pivotal across diverse applications, yet the burgeoning amount of data, coupled with complicating factors such as noise, exacerbates the challenge of classifying complex data. For algorithms that require a large amount of data, t...
ver más
|
|
|
|
|
|
|
Jianhe Li and Suohai Fan
In recent years, graph neural networks (GNNs) have played an important role in graph representation learning and have successfully achieved excellent results in semi-supervised classification. However, these GNNs often neglect the global smoothing of the...
ver más
|
|
|
|
|
|
|
Olga Tushkanova, Diana Levshun, Alexander Branitskiy, Elena Fedorchenko, Evgenia Novikova and Igor Kotenko
Cyberattacks on cyber-physical systems (CPS) can lead to severe consequences, and therefore it is extremely important to detect them at early stages. However, there are several challenges to be solved in this area; they include an ability of the security...
ver más
|
|
|
|