16   Artículos

 
en línea
Adam Olesinski and Zbigniew Piotrowski    
Revista: Applied Sciences    Formato: Electrónico

 
en línea
Yugen Yi, Haoming Zhang, Ningyi Zhang, Wei Zhou, Xiaomei Huang, Gengsheng Xie and Caixia Zheng    
As the feature dimension of data continues to expand, the task of selecting an optimal subset of features from a pool of limited labeled data and extensive unlabeled data becomes more and more challenging. In recent years, some semi-supervised feature se... ver más
Revista: Information    Formato: Electrónico

 
en línea
Timothy Tadj, Reza Arablouei and Volkan Dedeoglu    
Data trust in IoT is crucial for safeguarding privacy, security, reliable decision-making, user acceptance, and complying with regulations. Various approaches based on supervised or unsupervised machine learning (ML) have recently been proposed for evalu... ver más
Revista: Future Internet    Formato: Electrónico

 
en línea
Eva Romano-Moreno, Antonio Tomás, Gabriel Diaz-Hernandez, Javier L. Lara, Rafael Molina and Javier García-Valdecasas    
The good performance of the port activities in terminals is mainly conditioned by the dynamic response of the moored ship system at a berth. An adequate definition of the highly multivariate processes involved in the response of a moored ship at a berth ... ver más
Revista: Journal of Marine Science and Engineering    Formato: Electrónico

 
en línea
Mahmoud Maher ElMorshedy, Radwa Fathalla and Yasser El-Sonbaty    
Compactness and separability of data points are two important properties that contribute to the accuracy of machine learning tasks such as classification and clustering. We propose a framework that enhances the goodness criteria of the two properties by ... ver más
Revista: Applied Sciences    Formato: Electrónico

 
en línea
Yizhun Zhang and Qisheng Yan    
Landslide susceptibility prediction has the disadvantages of being challenging to apply to expanding landslide samples and the low accuracy of a subjective random selection of non-landslide samples. Taking Fu?an City, Fujian Province, as an example, a mo... ver más
Revista: ISPRS International Journal of Geo-Information    Formato: Electrónico

 
en línea
Tran Dinh Khang, Manh-Kien Tran and Michael Fowler    
Clustering is an unsupervised machine learning method with many practical applications that has gathered extensive research interest. It is a technique of dividing data elements into clusters such that elements in the same cluster are similar. Clustering... ver más
Revista: Algorithms    Formato: Electrónico

 
en línea
Amit Saxena, Shreya Pare, Mahendra Singh Meena, Deepak Gupta, Akshansh Gupta, Imran Razzak, Chin-Teng Lin and Mukesh Prasad    
This paper proposes a novel approach for selecting a subset of features in semi-supervised datasets where only some of the patterns are labeled. The whole process is completed in two phases. In the first phase, i.e., Phase-I, the whole dataset is divided... ver más
Revista: Algorithms    Formato: Electrónico

 
en línea
Xudong Liu, Yongzhong Tian, Xueqian Zhang and Zuyi Wan    
Overall scientific planning of urbanization layout is an important component of the new period of land spatial planning policies. Defining the main functions of different spaces and dividing urban functional areas are of great significance for optimizing... ver más
Revista: ISPRS International Journal of Geo-Information    Formato: Electrónico

 
en línea
Jiawen Tan, Wenlong Fu, Kai Wang, Xiaoming Xue, Wenbing Hu and Yahui Shan    
Rolling bearing is of great importance in modern industrial products, the failure of which may result in accidents and economic losses. Therefore, fault diagnosis of rolling bearing is significant and necessary and can enhance the reliability and efficie... ver más
Revista: Applied Sciences    Formato: Electrónico

« Anterior     Página: 1 de 1     Siguiente »