|
|
|
Fedor Krasnov and Alexander Butorin
Sparse spikes deconvolution is one of the oldest inverse problems, which is a stylized version of recovery in seismic imaging. The goal of sparse spike deconvolution is to recover an approximation of a given noisy measurement T = W ∗ r + W 0 ...
ver más
|
|
|
|
|
|
|
Jiachuan Yang, Zhi-Hua Wang, T. ?W. Lee
Pág. Page:86 - 102Abstrac
|
|
|
|
|
|
|
S. H. Ohh, P. L. Shinde, Z. Jin, J. Y. Choi, T.-W. Hahn, H. T. Lim, G. Y. Kim, Y. Park, K.-S. Hahm, and B. J. Chae
Pág. 1227 - 1234
|
|
|
|
|
|
|
Chang, H.-Y. Huang, T.-W. Wang, H. Wang, Y.-C. Chao, P.-C. Chen, C.-H.
Pág. 908 - 919
|
|
|
|
|
|
|
Chen, P.-Y. Huang, T.-W. Wang, H. Wang, Y.-C. Chen, C.-H. Chao, P.-C.
Pág. 1414 - 1424
|
|
|
|
|
|
|
Grasser, T. Tang, T.-W. Kosina, H. Selberherr, S.
Pág. 251 - 251
|
|
|
|
|
|
|
Kwon, O.-W. Chan, K. Lee, T.-W.
Pág. 137 - 140
|
|
|
|
|
|
|
Jang, G.-J. Lee, T.-W. Oh, Y.-H.
Pág. 168 - 171
|
|
|
|
|
|
|
Deng, K.-L. Huang, T.-W. Wang, H.
Pág. 2188 - 2196
|
|
|
|
|
|
|
Kuo, C.-F. Kuo, T.-W. Chang, C.
Pág. 433 - 446
|
|
|
|