127   Artículos

 
en línea
Dimitris Fotakis, Panagiotis Patsilinakos, Eleni Psaroudaki and Michalis Xefteris    
In this work, we consider the problem of shape-based time-series clustering with the widely used Dynamic Time Warping (DTW) distance. We present a novel two-stage framework based on Sparse Gaussian Modeling. In the first stage, we apply Sparse Gaussian P... ver más
Revista: Algorithms    Formato: Electrónico

 
en línea
Mizuki Asano, Takumi Miyoshi and Taku Yamazaki    
Smart home environments, which consist of various Internet of Things (IoT) devices to support and improve our daily lives, are expected to be widely adopted in the near future. Owing to a lack of awareness regarding the risks associated with IoT devices ... ver más
Revista: Future Internet    Formato: Electrónico

 
en línea
D. Criado-Ramón, L. G. B. Ruiz and M. C. Pegalajar    
Pattern sequence-based models are a type of forecasting algorithm that utilizes clustering and other techniques to produce easily interpretable predictions faster than traditional machine learning models. This research focuses on their application in ene... ver más
Revista: Big Data and Cognitive Computing    Formato: Electrónico

 
en línea
Carla Sahori Seefoo Jarquin, Alessandro Gandelli, Francesco Grimaccia and Marco Mussetta    
Understanding how, why and when energy consumption changes provides a tool for decision makers throughout the power networks. Thus, energy forecasting provides a great service. This research proposes a probabilistic approach to capture the five inherent ... ver más
Revista: Forecasting    Formato: Electrónico

 
en línea
Massimo Pacella, Matteo Mangini and Gabriele Papadia    
Considering the issue of energy consumption reduction in industrial plants, we investigated a clustering method for mining the time-series data related to energy consumption. The industrial case study considered in our work is one of the most energy-inte... ver más
Revista: Algorithms    Formato: Electrónico

 
en línea
Renjie Chen and Nalini Ravishanker    
With the advancement of IoT technologies, there is a large amount of data available from wireless sensor networks (WSN), particularly for studying climate change. Clustering long and noisy time series has become an important research area for analyzing t... ver más
Revista: Future Internet    Formato: Electrónico

 
en línea
Peng-Yeng Yin    
Air pollution has been a global issue that solicits proposals for sustainable development of social economics. Though the sources emitting pollutants are thoroughly investigated, the transportation, dispersion, scattering, and diminishing of pollutants i... ver más
Revista: Applied Sciences    Formato: Electrónico

 
en línea
Jasper Mohr, Andreas Tewes, Hella Ahrends and Thomas Gaiser    
(1) Background: The relation between the sub-field heterogeneity of soil properties and high-resolution satellite time series data might help to explain spatiotemporal patterns of crop growth, but detailed field studies are seldom. (2) Methods: Normalize... ver más
Revista: Agriculture    Formato: Electrónico

 
en línea
Daiwei Zhang, Chunyang Ying, Lei Wu, Zhongqiu Meng, Xiaofei Wang and Youhua Ma    
Timely and accurate extraction of crop planting structure information is of great importance for food security and sustainable agricultural development. However, long time series data with high spatial resolution have a much larger data volume, which ser... ver más
Revista: Agronomy    Formato: Electrónico

 
en línea
Chen Wang, Si-jia Zhao, Zong-qiang Ren and Qi Long    
Classifying a time series is a fundamental task in temporal analysis. This provides valuable insights into the temporal characteristics of data. Although it has been applied to traffic flow and individual-centered accessibility analysis, it has yet to be... ver más
Revista: ISPRS International Journal of Geo-Information    Formato: Electrónico

« Anterior     Página: 1 de 8     Siguiente »