18   Artículos

 
en línea
Tamim Mahmud Al-Hasan, Aya Nabil Sayed, Faycal Bensaali, Yassine Himeur, Iraklis Varlamis and George Dimitrakopoulos    
Recommender systems are a key technology for many applications, such as e-commerce, streaming media, and social media. Traditional recommender systems rely on collaborative filtering or content-based filtering to make recommendations. However, these appr... ver más
Revista: Big Data and Cognitive Computing    Formato: Electrónico

 
en línea
Suleiman Ali Alsaif, Minyar Sassi Hidri, Imen Ferjani, Hassan Ahmed Eleraky and Adel Hidri    
For more than ten years, online job boards have provided their services to both job seekers and employers who want to hire potential candidates. The provided services are generally based on traditional information retrieval techniques, which may not be a... ver más
Revista: Big Data and Cognitive Computing    Formato: Electrónico

 
en línea
Olga Malyeyeva, Vadym Yesipov, Roman Artiukh, Viktor Kosenko     Pág. 59 - 68
The subject of research in the article is the methods of finding close objects and technologies of forming recommendations. The aim of the article is to develop a recommendation system based on a hybrid method of searching for objects, taking into accoun... ver más

 
en línea
Ezekiel Mensah Martey, Hang Lei, Xiaoyu Li and Obed Appiah    
Image representation plays a vital role in the realisation of Content-Based Image Retrieval (CBIR) system. The representation is performed because pixel-by-pixel matching for image retrieval is impracticable as a result of the rigid nature of such an app... ver más
Revista: Algorithms    Formato: Electrónico

 
en línea
Márcio Guia, Rodrigo Rocha Silva and Jorge Bernardino    
The growth of the Internet has increased the amount of data and information available to any person at any time. Recommendation Systems help users find the items that meet their preferences, among the large number of items available. Techniques such as c... ver más
Revista: Algorithms    Formato: Electrónico

 
en línea
Paul Sheridan, Mikael Onsjö, Claudia Becerra, Sergio Jimenez and George Dueñas    
Collaborative filtering based recommender systems have proven to be extremely successful in settings where user preference data on items is abundant. However, collaborative filtering algorithms are hindered by their weakness against the item cold-start p... ver más
Revista: Future Internet    Formato: Electrónico

 
en línea
Elahe Khazaei and Abbas Alimohammadi    
Location-based social networking services have attracted great interest with the growth of smart mobile devices. Recommending locations for users based on their preferences is an important task for location-based social networks (LBSNs). Since human bein... ver más
Revista: ISPRS International Journal of Geo-Information    Formato: Electrónico

 
en línea
Vasyl Lytvyn,Victoria Vysotska,Viktor Shatskykh,Ihor Kohut,Oksana Petruchenko,Lyudmyla Dzyubyk,Vitaliy Bobrivetc,Valentyna Panasyuk,Svitlana Sachenko,Myroslav Komar     Pág. 6 - 28
The paper reports a study into recommendation algorithms and determination of their advantages and disadvantages. The method for developing recommendations based on collaborative filtering such as Content-Based Filtering (CBF), Collaborative Filtering (C... ver más
Revista: Eastern-European Journal of Enterprise Technologies    Formato: Electrónico

 
en línea
Mingxuan Sun, Fei Li and Jian Zhang    
Collaborative filtering (CF) approaches, which provide recommendations based on ratings or purchase history, perform well for users and items with sufficient interactions. However, CF approaches suffer from the cold-start problem for users and items with... ver más
Revista: Big Data and Cognitive Computing    Formato: Electrónico

 
en línea
Qingyao Ai, Vahid Azizi, Xu Chen and Yongfeng Zhang    
Providing model-generated explanations in recommender systems is important to user experience. State-of-the-art recommendation algorithms?especially the collaborative filtering (CF)- based approaches with shallow or deep models?usually work with various ... ver más
Revista: Algorithms    Formato: Electrónico

« Anterior     Página: 1 de 2     Siguiente »