|
|
|
Masoud Jafari Shalamzari, Wanchang Zhang, Atefeh Gholami and Zhijie Zhang
Site selection for runoff harvesting at large scales is a very complex task. It requires inclusion and spatial analysis of a multitude of accurately measured parameters in a time-efficient manner. Compared with direct measurements of runoff, which is tim...
ver más
|
|
|
|
|
|
|
Moiz Hassan, Kandasamy Illanko and Xavier N. Fernando
Single Image Super Resolution (SSIR) is an intriguing research topic in computer vision where the goal is to create high-resolution images from low-resolution ones using innovative techniques. SSIR has numerous applications in fields such as medical/sate...
ver más
|
|
|
|
|
|
|
Salman Ibne Eunus, Shahriar Hossain, A. E. M. Ridwan, Ashik Adnan, Md. Saiful Islam, Dewan Ziaul Karim, Golam Rabiul Alam and Jia Uddin
Accidents due to defective railway lines and derailments are common disasters that are observed frequently in Southeast Asian countries. It is imperative to run proper diagnosis over the detection of such faults to prevent such accidents. However, manual...
ver más
|
|
|
|
|
|
|
Huizhong Xiong, Xiaotong Gao, Ningyi Zhang, Haoxiong He, Weidong Tang, Yingqiu Yang, Yuqian Chen, Yang Jiao, Yihong Song and Shuo Yan
A novel deep learning model, DiffuCNN, is introduced in this paper, specifically designed for counting tobacco lesions in complex agricultural settings. By integrating advanced image processing techniques with deep learning methodologies, the model signi...
ver más
|
|
|
|
|
|
|
Darin Majnaric, Sandi Baressi ?egota, Nikola Andelic and Jerolim Andric
One of the main problems in the application of machine learning techniques is the need for large amounts of data necessary to obtain a well-generalizing model. This is exacerbated for studies in which it is not possible to access large amounts of data?fo...
ver más
|
|
|
|
|
|
|
Tamás Kegyes, Alex Kummer, Zoltán Süle and János Abonyi
We analyzed a special class of graph traversal problems, where the distances are stochastic, and the agent is restricted to take a limited range in one go. We showed that both constrained shortest Hamiltonian pathfinding problems and disassembly line bal...
ver más
|
|
|
|
|
|
|
Liang Liu, Tianbin Li and Chunchi Ma
Three-dimensional (3D) models provide the most intuitive representation of geological conditions. Traditional modeling methods heavily depend on technicians? expertise and lack ease of updating. In this study, we introduce a deep learning-based method fo...
ver más
|
|
|
|
|
|
|
Zhenwen He, Xianzhen Liu and Chunfeng Zhang
Three-dimensional voxel models are widely applied in various fields such as 3D imaging, industrial design, and medical imaging. The advancement of 3D modeling techniques and measurement devices has made the generation of three-dimensional models more con...
ver más
|
|
|
|
|
|
|
Luis Zuloaga-Rotta, Rubén Borja-Rosales, Mirko Jerber Rodríguez Mallma, David Mauricio and Nelson Maculan
The forecasting of presidential election results (PERs) is a very complex problem due to the diversity of electoral factors and the uncertainty involved. The use of a hybrid approach composed of techniques such as machine learning (ML) and Simulation in ...
ver más
|
|
|
|
|
|
|
Pablo Brusola, Sergio Garcia-Nieto, Jose Vicente Salcedo, Miguel Martinez and Robert H. Bishop
This paper presents a mathematical modeling approach utilizing a fuzzy modeling framework for fixed-wing aircraft systems with the goal of creating a highly desirable mathematical representation for model-based control design applications. The starting p...
ver más
|
|
|
|