|
|
|
Jeffrey Tim Query, Evaristo Diz
Pág. 145 - 159
AbstractIn this study we examine the robustness of fit for a multivariate and an autoregressive integrated moving average model to a data sample time series type. The sample is a recurrent actuarial data set for a 10-year horizon. We utilize ...
ver más
|
|
|
|
|
|
|
Saeed Samadianfard, Salar Jarhan, Ely Salwana, Amir Mosavi, Shahaboddin Shamshirband and Shatirah Akib
Advancement in river flow prediction systems can greatly empower the operational river management to make better decisions, practices, and policies. Machine learning methods recently have shown promising results in building accurate models for river flow...
ver más
|
|
|
|
|
|
|
Filippo Giorcelli, Sergej Antonello Sirigu, Giuseppe Giorgi, Nicolás Faedo, Mauro Bonfanti, Jacopo Ramello, Ermanno Giorcelli and Giuliana Mattiazzo
Among the challenges generated by the global climate crisis, a significant concern is the constant increase in energy demand. This leads to the need to ensure that any novel energy systems are not only renewable but also reliable in their performance. A ...
ver más
|
|
|
|
|
|
|
Songpu Li, Xinran Yu and Peng Chen
Model robustness is an important index in medical cybersecurity, and hard-negative samples in electronic medical records can provide more gradient information, which can effectively improve the robustness of a model. However, hard negatives pose difficul...
ver más
|
|
|
|
|
|
|
Javensius Sembiring, Rianto Adhy Sasongko, Eduardo I. Bastian, Bayu Aji Raditya and Rayhan Ekananto Limansubroto
This paper investigates the development of a deep learning-based flight control model for a tilt-rotor unmanned aerial vehicle, focusing on altitude, speed, and roll hold systems. Training data is gathered from the X-Plane flight simulator, employing a p...
ver más
|
|
|
|
|
|
|
Jianian Li, Zhengquan Liu and Dejin Wang
The precise detection of diseases is crucial for the effective treatment of pear trees and to improve their fruit yield and quality. Currently, recognizing plant diseases in complex backgrounds remains a significant challenge. Therefore, a lightweight CC...
ver más
|
|
|
|
|
|
|
Min Li, Zhirui Cui and Tianyu Fan
In order to further improve the accuracy of flood routing, this article uses the Variable Exponential Nonlinear Muskingum Model (VEP-NMM), combined with the Artificial Rabbit Optimization (ARO) algorithm for parameter calibration, to construct the ARO-VE...
ver más
|
|
|
|
|
|
|
Hanyue Xu, Kah Phooi Seng, Jeremy Smith and Li Minn Ang
In the context of smart cities, the integration of artificial intelligence (AI) and the Internet of Things (IoT) has led to the proliferation of AIoT systems, which handle vast amounts of data to enhance urban infrastructure and services. However, the co...
ver más
|
|
|
|
|
|
|
Yushan Li and Satoshi Fujita
This paper proposes a novel event-driven architecture for enhancing edge-based vehicular systems within smart transportation. Leveraging the inherent real-time, scalable, and fault-tolerant nature of the Elixir language, we present an innovative architec...
ver más
|
|
|
|
|
|
|
Yoga Sasmita, Heri Kuswanto and Dedy Dwi Prastyo
Standard time-series modeling requires the stability of model parameters over time. The instability of model parameters is often caused by structural breaks, leading to the formation of nonlinear models. A state-dependent model (SDM) is a more general an...
ver más
|
|
|
|