|
|
|
Juan Murillo-Morera, Carlos Castro-Herrera, Javier Arroyo, Ruben Fuentes-Fernandez
Pág. 114 - 137
Today, it is common for software projects to collect measurement data through development processes. With these data, defect prediction software can try to estimate the defect proneness of a software module, with the objective of assisting and guiding so...
ver más
|
|
|
|
|
|
|
Yan Chen and Chunchun Hu
Accurate prediction of fine particulate matter (PM2.5) concentration is crucial for improving environmental conditions and effectively controlling air pollution. However, some existing studies could ignore the nonlinearity and spatial correlation of time...
ver más
|
|
|
|
|
|
|
Eyad K. Sayhood, Nisreen S. Mohammed, Salam J. Hilo and Salih S. Salih
This paper presents comprehensive empirical equations to predict the shear strength capacity of reinforced concrete deep beams, with a focus on improving the accuracy of existing codes. Analyzing 198 deep beams imported from 15 existing investigations, t...
ver más
|
|
|
|
|
|
|
Weiying Wang and Toshihiro Osaragi
The generation and prediction of daily human mobility patterns have raised significant interest in many scientific disciplines. Using various data sources, previous studies have examined several deep learning frameworks, such as the RNN and GAN, to synth...
ver más
|
|
|
|
|
|
|
Fraser King, Miroslav Kolàr, Scott Briggs, Mehran Behazin, Peter Keech and Nikitas Diomidis
The disposal of high-level radioactive waste (HLW) and spent nuclear fuel (SF) presents a unique challenge for the prediction of the long-term performance of corrodible structures since HLW/SF containers are expected, in some cases, to have lifetimes of ...
ver más
|
|
|
|
|
|
|
Dibo Dong, Shangwei Wang, Qiaoying Guo, Yiting Ding, Xing Li and Zicheng You
Predicting wind speed over the ocean is difficult due to the unequal distribution of buoy stations and the occasional fluctuations in the wind field. This study proposes a dynamic graph embedding-based graph neural network?long short-term memory joint fr...
ver más
|
|
|
|
|
|
|
Varsha S. Lalapura, Veerender Reddy Bhimavarapu, J. Amudha and Hariram Selvamurugan Satheesh
The Recurrent Neural Networks (RNNs) are an essential class of supervised learning algorithms. Complex tasks like speech recognition, machine translation, sentiment classification, weather prediction, etc., are now performed by well-trained RNNs. Local o...
ver más
|
|
|
|
|
|
|
Chunru Cheng, Linbing Wang, Xingye Zhou and Xudong Wang
As the main cause of asphalt pavement distress, rutting severely affects pavement safety. Establishing an accurate rutting prediction model is crucial for asphalt pavement maintenance, pavement structure design, and pavement repair. This study explores f...
ver más
|
|
|
|
|
|
|
Zeqin Tian, Dengfeng Chen and Liang Zhao
Accurate building energy consumption prediction is a crucial condition for the sustainable development of building energy management systems. However, the highly nonlinear nature of data and complex influencing factors in the energy consumption of large ...
ver más
|
|
|
|
|
|
|
Haoyu Lin, Pengkun Quan, Zhuo Liang, Dongbo Wei and Shichun Di
With the rise of electric vehicles, autonomous driving, and valet parking technologies, considerable research has been dedicated to automatic charging solutions. While the current focus lies on charging robot design and the visual positioning of charging...
ver más
|
|
|
|