22   Artículos

 
en línea
Marie-Therese Charlotte Evans, Majid Latifi, Mominul Ahsan and Julfikar Haider    
Keyword extraction from Knowledge Bases underpins the definition of relevancy in Digital Library search systems. However, it is the pertinent task of Joint Relation Extraction, which populates the Knowledge Bases from which results are retrieved. Recent ... ver más
Revista: Information    Formato: Electrónico

 
en línea
Yuexing Zhang, Yiping Li, Shuo Li, Junbao Zeng, Yiqun Wang and Shuxue Yan    
This paper proposes a centralized MTT method based on a state-of-the-art multi-sensor labeled multi-Bernoulli (LMB) filter in underwater multi-static networks with autonomous underwater vehicles (AUVs). The LMB filter can accurately extract the number of... ver más
Revista: Journal of Marine Science and Engineering    Formato: Electrónico

 
en línea
Jonathan Ponniah and Or D. Dantsker    
A system is considered in which agents (UAVs) must cooperatively discover interest-points (i.e., burning trees, geographical features) evolving over a grid. The objective is to locate as many interest-points as possible in the shortest possible time fram... ver más
Revista: Aerospace    Formato: Electrónico

 
en línea
Amedeo Buonanno, Antonio Nogarotto, Giuseppe Cacace, Giovanni Di Gennaro, Francesco A. N. Palmieri, Maria Valenti and Giorgio Graditi    
In this work, we investigate an Information Fusion architecture based on a Factor Graph in Reduced Normal Form. This paradigm permits to describe the fusion in a completely probabilistic framework and the information related to the different features are... ver más
Revista: Applied Sciences    Formato: Electrónico

 
en línea
Andrea Ruggieri, Francesco Stranieri, Fabio Stella and Marco Scutari    
Incomplete data are a common feature in many domains, from clinical trials to industrial applications. Bayesian networks (BNs) are often used in these domains because of their graphical and causal interpretations. BN parameter learning from incomplete da... ver más
Revista: Algorithms    Formato: Electrónico

 
en línea
Yue Zhang and Fangai Liu    
A deep belief network (DBN) is a powerful generative model based on unlabeled data. However, it is difficult to quickly determine the best network structure and gradient dispersion in traditional DBN. This paper proposes an improved deep belief network (... ver más
Revista: Future Internet    Formato: Electrónico

 
en línea
Jianzhuo Yan, Ya Gao, Yongchuan Yu, Hongxia Xu and Zongbao Xu    
Recently, the quality of fresh water resources is threatened by numerous pollutants. Prediction of water quality is an important tool for controlling and reducing water pollution. By employing superior big data processing ability of deep learning it is p... ver más
Revista: Water    Formato: Electrónico

 
en línea
Jun Lin, Lei Su, Yingjie Yan, Gehao Sheng, Da Xie and Xiuchen Jiang    
It is of great significance to accurately get the running state of power transformers and timely detect the existence of potential transformer faults. This paper presents a prediction method of transformer running state based on LSTM_DBN network. Firstly... ver más
Revista: Energies    Formato: Electrónico

 
usuarios registrados
David Gamarnik, Devavrat Shah, and Yehua Wei     Pág. 410 - 428
Revista: OPERATIONS RESEARCH    Formato: Impreso

 
usuarios registrados
Komodakis, N.; Tziritas, G.     Pág. 2649 - 2661
Revista: IEEE TRANSACTIONS ON IMAGE PROCESSING    Formato: Impreso

« Anterior     Página: 1 de 2     Siguiente »