|
|
|
Jeffrey Tim Query, Evaristo Diz
Pág. 145 - 159
AbstractIn this study we examine the robustness of fit for a multivariate and an autoregressive integrated moving average model to a data sample time series type. The sample is a recurrent actuarial data set for a 10-year horizon. We utilize ...
ver más
|
|
|
|
|
|
|
Saeed Samadianfard, Salar Jarhan, Ely Salwana, Amir Mosavi, Shahaboddin Shamshirband and Shatirah Akib
Advancement in river flow prediction systems can greatly empower the operational river management to make better decisions, practices, and policies. Machine learning methods recently have shown promising results in building accurate models for river flow...
ver más
|
|
|
|
|
|
|
William Villegas-Ch, Angel Jaramillo-Alcázar and Sergio Luján-Mora
This study evaluated the generation of adversarial examples and the subsequent robustness of an image classification model. The attacks were performed using the Fast Gradient Sign method, the Projected Gradient Descent method, and the Carlini and Wagner ...
ver más
|
|
|
|
|
|
|
Changren Ke, Yihui Fan and Junling Jiang
In order to study the effect of the support mode of a staggered truss system on the continuous collapse resistance performance of a steel structure, four finite element models were established based on the bracing arrangement of a five-story steel frame ...
ver más
|
|
|
|
|
|
|
Chenglin Yang, Dongliang Xu and Xiao Ma
Due to the increasing severity of network security issues, training corresponding detection models requires large datasets. In this work, we propose a novel method based on generative adversarial networks to synthesize network data traffic. We introduced...
ver más
|
|
|
|
|
|
|
Seyed Mohammad Hashemi, Ruxandra Mihaela Botez and Georges Ghazi
Accurate aircraft trajectory prediction is fundamental for enhancing air traffic control systems, ensuring a safe and efficient aviation transportation environment. This research presents a detailed study on the efficacy of the Random Forest (RF) methodo...
ver más
|
|
|
|
|
|
|
C. Tamilselvi, Md Yeasin, Ranjit Kumar Paul and Amrit Kumar Paul
Denoising is an integral part of the data pre-processing pipeline that often works in conjunction with model development for enhancing the quality of data, improving model accuracy, preventing overfitting, and contributing to the overall robustness of pr...
ver más
|
|
|
|
|
|
|
Junling Zhang, Min Mei, Jun Wang, Guangpeng Shang, Xuefeng Hu, Jing Yan and Qian Fang
The deformation of tunnel support structures during tunnel construction is influenced by geological factors, geometrical factors, support factors, and construction factors. Accurate prediction of tunnel support structure deformation is crucial for engine...
ver más
|
|
|
|
|
|
|
Ancilon Leuch Alencar, Marcelo Dornbusch Lopes, Anita Maria da Rocha Fernandes, Julio Cesar Santos dos Anjos, Juan Francisco De Paz Santana and Valderi Reis Quietinho Leithardt
In the current era of social media, the proliferation of images sourced from unreliable origins underscores the pressing need for robust methods to detect forged content, particularly amidst the rapid evolution of image manipulation technologies. Existin...
ver más
|
|
|
|
|
|
|
Sarfaraz Natha, Umme Laila, Ibrahim Ahmed Gashim, Khalid Mahboob, Muhammad Noman Saeed and Khaled Mohammed Noaman
Brain tumors (BT) represent a severe and potentially life-threatening cancer. Failing to promptly diagnose these tumors can significantly shorten a person?s life. Therefore, early and accurate detection of brain tumors is essential, allowing for appropri...
ver más
|
|
|
|