31   Artículos

 
en línea
Lauren M. Paladino, Alexander Hughes, Alexander Perera, Oguzhan Topsakal and Tahir Cetin Akinci    
Globally, over 17 million people annually die from cardiovascular diseases, with heart disease being the leading cause of mortality in the United States. The ever-increasing volume of data related to heart disease opens up possibilities for employing mac... ver más
Revista: AI    Formato: Electrónico

 
en línea
Muhammad Mateen Yaqoob, Muhammad Nazir, Muhammad Amir Khan, Sajida Qureshi and Amal Al-Rasheed    
One of the deadliest diseases, heart disease, claims millions of lives every year worldwide. The biomedical data collected by health service providers (HSPs) contain private information about the patient and are subject to general privacy concerns, and t... ver más
Revista: Applied Sciences    Formato: Electrónico

 
en línea
Annwesha Banerjee Majumder, Somsubhra Gupta, Dharmpal Singh, Biswaranjan Acharya, Vassilis C. Gerogiannis, Andreas Kanavos and Panagiotis Pintelas    
Heart disease is a leading global cause of mortality, demanding early detection for effective and timely medical intervention. In this study, we propose a machine learning-based model for early heart disease prediction. This model is trained on a dataset... ver más
Revista: Algorithms    Formato: Electrónico

 
en línea
Daniyal Asif, Mairaj Bibi, Muhammad Shoaib Arif and Aiman Mukheimer    
Heart disease is a significant global health issue, contributing to high morbidity and mortality rates. Early and accurate heart disease prediction is crucial for effectively preventing and managing the condition. However, this remains a challenging task... ver más
Revista: Algorithms    Formato: Electrónico

 
en línea
Chintan M. Bhatt, Parth Patel, Tarang Ghetia and Pier Luigi Mazzeo    
The diagnosis and prognosis of cardiovascular disease are crucial medical tasks to ensure correct classification, which helps cardiologists provide proper treatment to the patient. Machine learning applications in the medical niche have increased as they... ver más
Revista: Algorithms    Formato: Electrónico

 
en línea
Amna Al-Sayed, Mashael M. Khayyat and Nuha Zamzami    
Different data types are frequently included in clinical data. Applying machine learning algorithms to mixed data can be difficult and impact the output accuracy and quality. This paper proposes a hybrid model of unsupervised and supervised learning tech... ver más
Revista: Applied Sciences    Formato: Electrónico

 
en línea
Shadi AlZu?bi, Mohammad Elbes, Ala Mughaid, Noor Bdair, Laith Abualigah, Agostino Forestiero and Raed Abu Zitar    
Diabetes is a metabolic disorder in which the body is unable to properly regulate blood sugar levels. It can occur when the body does not produce enough insulin or when cells become resistant to insulin?s effects. There are two main types of diabetes, Ty... ver más
Revista: Future Internet    Formato: Electrónico

 
en línea
Jian Yang and Jinhan Guan    
In today?s world, heart disease is the leading cause of death globally. Researchers have proposed various methods aimed at improving the accuracy and efficiency of the clinical diagnosis of heart disease. Auxiliary diagnostic systems based on machine lea... ver más
Revista: Information    Formato: Electrónico

 
en línea
Heba Aly Elzeheiry, Sherief Barakat and Amira Rezk    
In recent years, medical data have vastly increased due to the continuous generation of digital data. The different forms of medical data, such as reports, textual, numerical, monitoring, and laboratory data generate the so-called medical big data. This ... ver más
Revista: Applied Sciences    Formato: Electrónico

 
en línea
Nellyzeth Flores, Marco A. Reyna, Roberto L. Avitia, Jose Antonio Cardenas-Haro and Conrado Garcia-Gonzalez    
Cardiovascular disease (CVD) is a global public health problem. It is a disease of multifactorial origin, and with this characteristic, having an accurate diagnosis of its incidence is a problem that health personnel face every day. That is why having al... ver más
Revista: Algorithms    Formato: Electrónico

« Anterior     Página: 1 de 2     Siguiente »