38   Artículos

 
en línea
Jeffrey Tim Query, Evaristo Diz     Pág. 145 - 159
AbstractIn this study we examine the robustness of fit for a multivariate and an autoregressive integrated moving average model to a data sample time series type.  The sample is a recurrent actuarial data set for a 10-year horizon.  We utilize ... ver más
Revista: IRA-International Journal of Management & Social Sciences    Formato: Electrónico

 
en línea
Kun Zhang, Jianyao Yao, Wenxiang Zhu, Zhifu Cao, Teng Li and Jianqiang Xin    
The thermal protection system (TPS) represents one of the most critical subsystems for vehicle re-entry. However, due to uncertainties in thermal loads, material properties, and manufacturing deviations, the thermal response of the TPS exhibits significa... ver más
Revista: Aerospace    Formato: Electrónico

 
en línea
C. Tamilselvi, Md Yeasin, Ranjit Kumar Paul and Amrit Kumar Paul    
Denoising is an integral part of the data pre-processing pipeline that often works in conjunction with model development for enhancing the quality of data, improving model accuracy, preventing overfitting, and contributing to the overall robustness of pr... ver más
Revista: Forecasting    Formato: Electrónico

 
en línea
Gregorius Ryan, Pricillia Katarina and Derwin Suhartono    
The rise of social media as a platform for self-expression and self-understanding has led to increased interest in using the Myers?Briggs Type Indicator (MBTI) to explore human personalities. Despite this, there needs to be more research on how other wor... ver más
Revista: Information    Formato: Electrónico

 
en línea
Lan Wang, Mingjiang Xie, Min Pan, Feng He, Bing Yang, Zhigang Gong, Xuke Wu, Mingsheng Shang and Kun Shan    
Harmful algal blooms (HABs) have been deteriorating global water bodies, and the accurate prediction of algal dynamics using the modelling method is a challenging research area. High-frequency monitoring and deep learning technology have opened up new ho... ver más
Revista: Water    Formato: Electrónico

 
en línea
Cindy Trinh, Silvia Lasala, Olivier Herbinet and Dimitrios Meimaroglou    
This article investigates the applicability domain (AD) of machine learning (ML) models trained on high-dimensional data, for the prediction of the ideal gas enthalpy of formation and entropy of molecules via descriptors. The AD is crucial as it describe... ver más
Revista: Algorithms    Formato: Electrónico

 
en línea
Demetris Koutsoyiannis and Alberto Montanari    
Bluecat is a recently proposed methodology to upgrade a deterministic model (D-model) into a stochastic one (S-model), based on the hypothesis that the information contained in a time series of observations and the concurrent predictions made by the D-mo... ver más
Revista: Hydrology    Formato: Electrónico

 
en línea
Katleho Makatjane and Tshepiso Tsoku    
This study aims to overcome the problem of dimensionality, accurate estimation, and forecasting Value-at-Risk (VaR) and Expected Shortfall (ES) uncertainty intervals in high frequency data. A Bayesian bootstrapping and backtest density forecasts, which a... ver más
Revista: International Journal of Financial Studies    Formato: Electrónico

 
en línea
Yuan Chen and Abdul Q. M. Khaliq    
The Lee?Carter model could be considered as one of the most important mortality prediction models among stochastic models in the field of mortality. With the recent developments of machine learning and deep learning, many studies have applied deep learni... ver más
Revista: Big Data and Cognitive Computing    Formato: Electrónico

 
en línea
Md Monowar Hossain, A. H. M. Faisal Anwar, Nikhil Garg, Mahesh Prakash and Mohammed Bari    
Early prediction of rainfall is important for the planning of agriculture, water infrastructure, and other socio-economic developments. The near-term prediction (e.g., 10 years) of hydrologic data is a recent development in GCM (General Circulation Model... ver más
Revista: Hydrology    Formato: Electrónico

« Anterior     Página: 1 de 3     Siguiente »