|
|
|
Yeon Moon Choo, Deok Jun Jo, Gwan Seon Yun and Eui Hoon Lee
Frequent localized torrential rains, excessive population density in urban areas, and increased impervious areas have led to massive flood damage that has been causing overloading of drainage systems (watersheds, reservoirs, drainage pump sites, etc.). F...
ver más
|
|
|
|
|
|
|
Lei Li, Xiaobao Zeng, Xinpeng Pan, Ling Peng, Yuyang Tan and Jianxin Liu
Microseismic monitoring plays an essential role for reservoir characterization and earthquake disaster monitoring and early warning. The accuracy of the subsurface velocity model directly affects the precision of event localization and subsequent process...
ver más
|
|
|
|
|
|
|
Yee Sye Lee, Ali Rashidi, Amin Talei and Daniel Kong
In recent years, mixed reality (MR) technology has gained popularity in construction management due to its real-time visualisation capability to facilitate on-site decision-making tasks. The semantic segmentation of building components provides an attrac...
ver más
|
|
|
|
|
|
|
MohammadHossein Reshadi, Wen Li, Wenjie Xu, Precious Omashor, Albert Dinh, Scott Dick, Yuntong She and Michael Lipsett
Anomaly detection in data streams (and particularly time series) is today a vitally important task. Machine learning algorithms are a common design for achieving this goal. In particular, deep learning has, in the last decade, proven to be substantially ...
ver más
|
|
|
|
|
|
|
Nadia Brancati and Maria Frucci
To support pathologists in breast tumor diagnosis, deep learning plays a crucial role in the development of histological whole slide image (WSI) classification methods. However, automatic classification is challenging due to the high-resolution data and ...
ver más
|
|
|
|
|
|
|
Mirko Dinulovic, Aleksandar Benign and Bo?ko Ra?uo
In the present work, the potential application of machine learning techniques in the flutter prediction of composite materials missile fins is investigated. The flutter velocity data set required for different fin aerodynamic geometries and materials is ...
ver más
|
|
|
|
|
|
|
Bata Hena, Ziang Wei, Luc Perron, Clemente Ibarra Castanedo and Xavier Maldague
Industrial radiography is a pivotal non-destructive testing (NDT) method that ensures quality and safety in a wide range of industrial sectors. Conventional human-based approaches, however, are prone to challenges in defect detection accuracy and efficie...
ver más
|
|
|
|
|
|
|
Ping Dong, Kuo Li, Ming Wang, Feitao Li, Wei Guo and Haiping Si
In addition to the conventional situation of detecting a single disease on a single leaf in corn leaves, there is a complex phenomenon of multiple diseases overlapping on a single leaf (compound diseases). Current research on corn leaf disease detection ...
ver más
|
|
|
|
|
|
|
Abdul Rehman Khalid, Nsikak Owoh, Omair Uthmani, Moses Ashawa, Jude Osamor and John Adejoh
In the era of digital advancements, the escalation of credit card fraud necessitates the development of robust and efficient fraud detection systems. This paper delves into the application of machine learning models, specifically focusing on ensemble met...
ver más
|
|
|
|
|
|
|
James Oduor Oyoo, Jael Sanyanda Wekesa and Kennedy Odhiambo Ogada
Road traffic collisions are among the world?s critical issues, causing many casualties, deaths, and economic losses, with a disproportionate burden falling on developing countries. Existing research has been conducted to analyze this situation using diff...
ver más
|
|
|
|