|
|
|
Saeed Samadianfard, Salar Jarhan, Ely Salwana, Amir Mosavi, Shahaboddin Shamshirband and Shatirah Akib
Advancement in river flow prediction systems can greatly empower the operational river management to make better decisions, practices, and policies. Machine learning methods recently have shown promising results in building accurate models for river flow...
ver más
|
|
|
|
|
|
|
Ognjen Radovic,Srdan Marinkovic,Jelena Radojicic
Credit scoring attracts special attention of financial institutions. In recent years, deep learning methods have been particularly interesting. In this paper, we compare the performance of ensemble deep learning methods based on decision trees with the b...
ver más
|
|
|
|
|
|
|
Jiarui Xia and Yongshou Dai
Ground roll noise suppression is a crucial step in processing deep pre-stack seismic data. Recently, supervised deep learning methods have gained popularity in this field due to their ability to adaptively learn and extract powerful features. However, th...
ver más
|
|
|
|
|
|
|
Alberto Alvarellos, Andrés Figuero, Santiago Rodríguez-Yáñez, José Sande, Enrique Peña, Paulo Rosa-Santos and Juan Rabuñal
Port managers can use predictions of the wave overtopping predictors created in this work to take preventative measures and optimize operations, ultimately improving safety and helping to minimize the economic impact that overtopping events have on the p...
ver más
|
|
|
|
|
|
|
Seokjoon Kwon, Jae-Hyeon Park, Hee-Deok Jang, Hyunwoo Nam and Dong Eui Chang
Deep learning algorithms are widely used for pattern recognition in electronic noses, which are sensor arrays for gas mixtures. One of the challenges of using electronic noses is sensor drift, which can degrade the accuracy of the system over time, even ...
ver más
|
|
|
|
|
|
|
Shihao Ma, Jiao Wu, Zhijun Zhang and Yala Tong
Addressing the limitations, including low automation, slow recognition speed, and limited universality, of current mudslide disaster detection techniques in remote sensing imagery, this study employs deep learning methods for enhanced mudslide disaster d...
ver más
|
|
|
|
|
|
|
Ryota Higashimoto, Soh Yoshida and Mitsuji Muneyasu
This paper addresses the performance degradation of deep neural networks caused by learning with noisy labels. Recent research on this topic has exploited the memorization effect: networks fit data with clean labels during the early stages of learning an...
ver más
|
|
|
|
|
|
|
Che-Hao Chang, Jason Lin, Jia-Wei Chang, Yu-Shun Huang, Ming-Hsin Lai and Yen-Jen Chang
Recently, data-driven approaches have become the dominant solution for prediction problems in agricultural industries. Several deep learning models have been applied to crop yield prediction in smart farming. In this paper, we proposed an efficient hybri...
ver más
|
|
|
|
|
|
|
Alper Taner, Mahtem Teweldemedhin Mengstu, Kemal Çagatay Selvi, Hüseyin Duran, Ibrahim Gür and Nicoleta Ungureanu
Having the advantages of speed, suitability and high accuracy, computer vision has been effectively utilized as a non-destructive approach to automatically recognize and classify fruits and vegetables, to meet the increased demand for food quality-sensin...
ver más
|
|
|
|
|
|
|
Zhe Yin, Mingkang Peng, Zhaodong Guo, Yue Zhao, Yaoyu Li, Wuping Zhang, Fuzhong Li and Xiaohong Guo
With the advancement of machine vision technology, pig face recognition has garnered significant attention as a key component in the establishment of precision breeding models. In order to explore non-contact individual pig recognition, this study propos...
ver más
|
|
|
|