14   Artículos

 
en línea
Marco Scutari    
Bayesian networks (BNs) are a foundational model in machine learning and causal inference. Their graphical structure can handle high-dimensional problems, divide them into a sparse collection of smaller ones, underlies Judea Pearl?s causality, and determ... ver más
Revista: Algorithms    Formato: Electrónico

 
en línea
Yi Zhang, Lanxin Qiu, Yangzhou Xu, Xinjia Wang, Shengjie Wang, Agyemang Paul and Zhefu Wu    
Software-Defined Networking (SDN) enhances network control but faces Distributed Denial of Service (DDoS) attacks due to centralized control and flow-table constraints in network devices. To overcome this limitation, we introduce a multi-path routing alg... ver más
Revista: Applied Sciences    Formato: Electrónico

 
en línea
Yuefeng Cen, Mingxing Luo, Gang Cen, Cheng Zhao and Zhigang Cheng    
It is meaningful to analyze the market correlations for stock selection in the field of financial investment. Since it is difficult for existing deep clustering methods to mine the complex and nonlinear features contained in financial time series, in ord... ver más
Revista: Future Internet    Formato: Electrónico

 
en línea
Xing Wu, Yifan Jin, Jianjia Wang, Quan Qian and Yike Guo    
Large-scale automatic speech recognition model has achieved impressive performance. However, huge computational resources and massive amount of data are required to train an ASR model. Knowledge distillation is a prevalent model compression method which ... ver más
Revista: Algorithms    Formato: Electrónico

 
en línea
Shunlei Li, Muhammad Adeel Azam, Ajay Gunalan and Leonardo S. Mattos    
Optical coherence tomography (OCT) is a rapidly evolving imaging technology that combines a broadband and low-coherence light source with interferometry and signal processing to produce high-resolution images of living tissues. However, the speckle noise... ver más
Revista: Applied Sciences    Formato: Electrónico

 
en línea
Peter Bajcsy, Nicholas J. Schaub and Michael Majurski    
This paper addresses the problem of designing trojan detectors in neural networks (NNs) using interactive simulations. Trojans in NNs are defined as triggers in inputs that cause misclassification of such inputs into a class (or classes) unintended by th... ver más
Revista: Applied Sciences    Formato: Electrónico

 
en línea
Han Zheng, Zanyang Cui and Xingchen Zhang    
Driving modes play vital roles in understanding the stochastic nature of a railway system and can support studies of automatic driving and capacity utilization optimization. Integrated trajectory data containing information such as GPS trajectories and g... ver más
Revista: ISPRS International Journal of Geo-Information    Formato: Electrónico

 
en línea
Jian Zhang, Zhaoguang Hu, Yanan Zheng, Yuhui Zhou and Ziwei Wan    
Unlike existing studies focused on the causal relationship between electricity consumption and economic growth at the macro level, this paper uses monthly data from January 2006 to December 2015 and applies the correlation coefficient, as well as Kullbac... ver más
Revista: Energies    Formato: Electrónico

 
en línea
Akira Yoshida, Yoshiharu Amano, Noboru Murata, Koichi Ito and Takumi Hasizume    
When evaluating residential energy systems like co-generation systems, hot water and electricity demand profiles are critical. In this paper, the authors aim to extract basic time-series demand patterns from two kinds of measured demand (electricity and ... ver más
Revista: Energies    Formato: Electrónico

« Anterior     Página: 1 de 1     Siguiente »