102   Artículos

 
en línea
Feifei He, Qinjuan Wan, Yongqiang Wang, Jiang Wu, Xiaoqi Zhang and Yu Feng    
Accurately predicting hydrological runoff is crucial for water resource allocation and power station scheduling. However, there is no perfect model that can accurately predict future runoff. In this paper, a daily runoff prediction method with a seasonal... ver más
Revista: Water    Formato: Electrónico

 
en línea
Danilo Pau, Andrea Pisani and Antonio Candelieri    
In the context of TinyML, many research efforts have been devoted to designing forward topologies to support On-Device Learning. Reaching this target would bring numerous advantages, including reductions in latency and computational complexity, stronger ... ver más
Revista: Algorithms    Formato: Electrónico

 
en línea
Abdullahi T. Sulaiman, Habeeb Bello-Salau, Adeiza J. Onumanyi, Muhammed B. Mu?azu, Emmanuel A. Adedokun, Ahmed T. Salawudeen and Abdulfatai D. Adekale    
The particle swarm optimization (PSO) algorithm is widely used for optimization purposes across various domains, such as in precision agriculture, vehicular ad hoc networks, path planning, and for the assessment of mathematical test functions towards ben... ver más
Revista: Algorithms    Formato: Electrónico

 
en línea
Han Zhang, Yadong Wu, Weihan Zhang and Yuling Zhang    
The precise ascertainment of stellar ages is pivotal for astrophysical research into stellar characteristics and galactic dynamics. To address the prevalent challenges of suboptimal accuracy in stellar age determination and limited proficiency in apprehe... ver más
Revista: Applied Sciences    Formato: Electrónico

 
en línea
Alireza Hajiheidari, Mahmoud Reza Delavar and Abbas Rajabifard    
Enriching and updating maps are among the most important tasks of any urban management organization for informed decision making. Urban cadastral map enrichment is a time-consuming and costly process, which needs an expert?s opinion for quality control. ... ver más
Revista: ISPRS International Journal of Geo-Information    Formato: Electrónico

 
en línea
Sunny Kumar Poguluri and Yoon Hyeok Bae    
The incorporation of machine learning (ML) has yielded substantial benefits in detecting nonlinear patterns across a wide range of applications, including offshore engineering. Existing ML works, specifically supervised regression models, have not underg... ver más
Revista: Journal of Marine Science and Engineering    Formato: Electrónico

 
en línea
Varsha S. Lalapura, Veerender Reddy Bhimavarapu, J. Amudha and Hariram Selvamurugan Satheesh    
The Recurrent Neural Networks (RNNs) are an essential class of supervised learning algorithms. Complex tasks like speech recognition, machine translation, sentiment classification, weather prediction, etc., are now performed by well-trained RNNs. Local o... ver más
Revista: Algorithms    Formato: Electrónico

 
en línea
Dennis Papenfuß, Bennet Gerlach, Stefan Fischer and Mohamed Ahmed Hail    
The IoT encompasses objects, sensors, and everyday items not typically considered computers. IoT devices are subject to severe energy, memory, and computation power constraints. Employing NDN for the IoT is a recent approach to accommodate these issues. ... ver más
Revista: Future Internet    Formato: Electrónico

 
en línea
Hosang Han and Jangwon Suh    
The accurate prediction of soil contamination in abandoned mining areas is necessary to address their environmental risks. This study employed a combined model of machine learning and geostatistics to predict the spatial distribution of soil contaminatio... ver más
Revista: Applied Sciences    Formato: Electrónico

 
en línea
Ana Corceiro, Nuno Pereira, Khadijeh Alibabaei and Pedro D. Gaspar    
The global population?s rapid growth necessitates a 70% increase in agricultural production, posing challenges exacerbated by weed infestation and herbicide drawbacks. To address this, machine learning (ML) models, particularly convolutional neural netwo... ver más
Revista: Algorithms    Formato: Electrónico

« Anterior     Página: 1 de 6     Siguiente »