ARTÍCULO
TITULO

Applying Deep Learning to Identify and Classify DGA Domains

E. Diuldin    
K.S. Zaytsev    

Resumen

The purpose of this work is to study methods for detecting malicious domains generated using DGA algorithms. To solve this problem, proposed to create a deep learning architecture based on the Tensorflow framework, and implement layers based on the Keras library. For training, testing and validation of the resulting architecture, data generated based on 25 known DGA generation algorithms and legitimate data obtained from Top Alexa were used. Using the data obtained, the proposed neural network architecture was compared with the known implementations of machine learning architectures according to the classification of DGA domains. The target metric by which the quality of the classification was compared was the f-measure with the parameter - the weight of accuracy in the metric (ß) equal to 0.4, which made it possible to choose the model with the highest prediction accuracy. The results obtained confirmed the effectiveness of the proposed solution. The result of the work was the creation of an effective machine learning architecture used to classify malicious DGA domains.

 Artículos similares

       
 
Jiawei Han, Qingsa Li, Ying Xu, Yan Zhu and Bingxin Wu    
Artificial intelligence-generated content (AIGC) technology has had disruptive results in AI, representing a new trend in research and application and promoting a new era of AI. The potential benefits of this technology are both profound and diverse. How... ver más
Revista: Applied Sciences

 
Tianhao Gao, Meng Zhang, Yifan Zhu, Youjian Zhang, Xiangsheng Pang, Jing Ying and Wenming Liu    
Classifying sports videos is complex due to their dynamic nature. Traditional methods, like optical flow and the Histogram of Oriented Gradient (HOG), are limited by their need for expertise and lack of universality. Deep learning, particularly Convoluti... ver más
Revista: Applied Sciences

 
Ilia Zaznov, Julian Martin Kunkel, Atta Badii and Alfonso Dufour    
This paper introduces a novel deep learning approach for intraday stock price direction prediction, motivated by the need for more accurate models to enable profitable algorithmic trading. The key problems addressed are effectively modelling complex limi... ver más
Revista: Applied Sciences

 
Huanhuan Zhang and Yufei Qie    
Deep learning (DL) has made significant strides in medical imaging. This review article presents an in-depth analysis of DL applications in medical imaging, focusing on the challenges, methods, and future perspectives. We discuss the impact of DL on the ... ver más
Revista: Applied Sciences

 
Nasrin Elhassan, Giuseppe Varone, Rami Ahmed, Mandar Gogate, Kia Dashtipour, Hani Almoamari, Mohammed A. El-Affendi, Bassam Naji Al-Tamimi, Faisal Albalwy and Amir Hussain    
Social media networks have grown exponentially over the last two decades, providing the opportunity for users of the internet to communicate and exchange ideas on a variety of topics. The outcome is that opinion mining plays a crucial role in analyzing u... ver más
Revista: Computers