Inicio  /  TECHNOMETRICS  /  Vol: 48 Núm: 1 Par: 0 (2006)  /  Artículo
ARTÍCULO
TITULO

Gaussian Markov Random Fields: Theory and Applications, by Håvard Rue and Leonhard Held

Picka    
Jeffrey D.    

Resumen

No disponible

 Artículos similares

       
 
Langfu Cui, Chaoqi Zhang, Qingzhen Zhang, Junle Wang, Yixuan Wang, Yan Shi, Cong Lin and Yang Jin    
There are some problems such as uncertain thresholds, high dimension of monitoring parameters and unclear parameter relationships in the anomaly detection of aero-engine gas path. These problems make it difficult for the high accuracy of anomaly detectio... ver más
Revista: Aerospace

 
Wilson Tsakane Mongwe, Rendani Mbuvha and Tshilidzi Marwala    
Markov chain Monte Carlo (MCMC) techniques are usually used to infer model parameters when closed-form inference is not feasible, with one of the simplest MCMC methods being the random walk Metropolis?Hastings (MH) algorithm. The MH algorithm suffers fro... ver más
Revista: Algorithms

 
Oleg Rudenko,Oleksandr Bezsonov,Oleh Lebediev,Nataliia Serdiuk     Pág. 44 - 52
The problem of identification of non-stationary parameters of a linear object, which can be described by the first-order Markov model, with non-Gaussian interference is considered. The identification algorithm is a gradient minimization procedure of the ... ver más

 
Jiangyi Liu, Chunping Wang, Wei Wang and Zheng Li    
Most multi-target tracking filters assume that one target and its observation follow a Hidden Markov Chain (HMC) model, but the implicit independence assumption of the HMC model is invalid in many practical applications, and a Pairwise Markov Chain (PMC)... ver más
Revista: Algorithms

 
Hanne T. Wist and Håvard Rue     Pág. 161 - 176