|
|
|
Yong Zhang, Xin Wang, Zongli Jiang, Junfeng Wei, Hiroyuki Enomoto and Tetsuo Ohata
Arctic glaciers comprise a small fraction of the world?s land ice area, but their ongoing mass loss currently represents a large cryospheric contribution to the sea level rise. In the Suntar-Khayata Mountains (SKMs) of northeastern Siberia, in situ measu...
ver más
|
|
|
|
|
|
Jianzhao Liu, Liping Gao, Fenghui Yuan, Yuedong Guo and Xiaofeng Xu
Soil water shortage is a critical issue for the Southwest US (SWUS), the typical arid region that has experienced severe droughts over the past decades, primarily caused by climate change. However, it is still not quantitatively understood how soil water...
ver más
|
|
|
|
|
|
Angel E. Muñoz-Zavala, Jorge E. Macías-Díaz, Daniel Alba-Cuéllar and José A. Guerrero-Díaz-de-León
This paper reviews the application of artificial neural network (ANN) models to time series prediction tasks. We begin by briefly introducing some basic concepts and terms related to time series analysis, and by outlining some of the most popular ANN arc...
ver más
|
|
|
|
|
|
Xiaoou Li
This paper tackles the challenge of time series forecasting in the presence of missing data. Traditional methods often struggle with such data, which leads to inaccurate predictions. We propose a novel framework that combines the strengths of Generative ...
ver más
|
|
|
|
|
|
George Westergaard, Utku Erden, Omar Abdallah Mateo, Sullaiman Musah Lampo, Tahir Cetin Akinci and Oguzhan Topsakal
Automated Machine Learning (AutoML) tools are revolutionizing the field of machine learning by significantly reducing the need for deep computer science expertise. Designed to make ML more accessible, they enable users to build high-performing models wit...
ver más
|
|
|