ARTÍCULO
TITULO

CLARANS: A Method for Clustering Objects for Spatial Data Mining

Ng    
R. T. Han    
J.    

Resumen

No disponible

 Artículos similares

       
 
Long-Xiao Luo, Zhong-Yi Sun and Zheng-Hong Tan    
Climatic seasonality has lacked research attention in terms of global tropical forests, where it impacts vegetation productivity, biodiversity, and hydrological cycles. This study employs two methods?climatological anomalous accumulation (CAA) and potent... ver más
Revista: Water

 
Yabin Tao and Ruixin Zhang    
Low-disturbance mining in surface mining (LDM) can transform traditional surface mine production systems into a more sustainable model by reducing the disturbance of surface mining, minimizing pollutant emissions, and reducing ecological impacts. The pur... ver más
Revista: Applied Sciences

 
Jiajia Peng and Tianbing Tang    
Image captioning, also recognized as the challenge of transforming visual data into coherent natural language descriptions, has persisted as a complex problem. Traditional approaches often suffer from semantic gaps, wherein the generated textual descript... ver más
Revista: Applied Sciences

 
Yuting Bai, Yijie Niu, Zhiyao Zhao, Xuebo Jin and Xiaoyi Wang    
The phenomenon of algal bloom seriously affects the function of the aquatic ecosystems, damages the landscape of urban river and lakes, and threatens the safety of water use. The introduction of a multi-attribute decision-making method avoids the shortco... ver más
Revista: Water

 
Frank Klawonn and Georg Hoffmann    
Clustering algorithms are usually iterative procedures. In particular, when the clustering algorithm aims to optimise an objective function like in k-means clustering or Gaussian mixture models, iterative heuristics are required due to the high non-linea... ver más
Revista: Algorithms