ARTÍCULO
TITULO

On the Sampling Distributions of the Estimated Process Loss Indices with Asymmetric Tolerances

Y. C. Chang    
W. L. Pearn    
Chien-Wei Wu    

Resumen

No disponible

 Artículos similares

       
 
Jeffrey O. Agushaka and Absalom E. Ezugwu    
A situation where the set of initial solutions lies near the position of the true optimality (most favourable or desirable solution) by chance can increase the probability of finding the true optimality and significantly reduce the search efforts. In opt... ver más
Revista: Applied Sciences

 
Sayumi Kaneko, Yuta Ozawa, Kumi Nakai, Yuji Saito, Taku Nonomura, Keisuke Asai and Hiroki Ura    
In this study, the propagation time and attenuation rate distributions of each sound source grid point (200 × 200) to a microphone of an arbitrary position across the shear layer, which are required for beamforming, were reconstructed by the reduced-orde... ver más
Revista: Applied Sciences

 
Bastien Lamarque, Bruno Deflandre, Adriana Galindo Dalto, Sabine Schmidt, Alicia Romero-Ramirez, Frédéric Garabetian, Nicolas Dubosq, Mélanie Diaz, Florent Grasso, Aldo Sottolichio, Guillaume Bernard, Hervé Gillet, Marie-Ange Cordier, Dominique Poirier, Pascal Lebleu, Hervé Derriennic, Martin Danilo, Márcio Murilo Barboza Tenório and Antoine Grémare    
The spatial distributions of (1) surface sediment characteristics (D0.5, Sediment Surface Area (SSA), Particulate Organic Carbon (POC), Chlorophyll-a (Chl-a), Phaeophytin-a (Phaeo-a), Total and Enzymatically Hydrolyzable Amino Acids (THAA, EHAA), d13C) a... ver más

 
Luca Braidotti, Jasna Prpic-Or?ic and Marko Valcic    
Recently, the application of machine learning has been explored to assess the main damage consequences without employing flooding sensors. This method can be the base of a new generation of onboard decision support systems to help the master during the p... ver más

 
Moussa Diallo, Shengwu Xiong, Eshete Derb Emiru, Awet Fesseha, Aminu Onimisi Abdulsalami and Mohamed Abd Elaziz    
Classification algorithms have shown exceptional prediction results in the supervised learning area. These classification algorithms are not always efficient when it comes to real-life datasets due to class distributions. As a result, datasets for real-l... ver más
Revista: Information