ARTÍCULO
TITULO

Motion Estimation Using Statistical Learning Theory

Wechsler    
H. Duric    
Z. Li    
F. Cherkassky    
V.    

Resumen

No disponible

 Artículos similares

       
 
David Zuehlke, Madhur Tiwari, Khalid Jebari and Krishna Bhavithavya Kidambi    
As interest in Moon exploration grows, and efforts to establish an orbiting outpost intensify, accurate modeling of spacecraft dynamics in cislunar space is becoming increasingly important. Contrary to satellites in Low Earth Orbit (LEO), where it takes ... ver más
Revista: Aerospace

 
Alvaro Arroyo Cebeira and Mariano Asensio Vicente    
In this paper, we propose a nonlinear tracking solution for maneuvering aerial targets based on an adaptive interacting multiple model (IMM) framework and unscented Kalman filters (UKFs), termed as AIMM-UKF. The purpose is to obtain more accurate estimat... ver más
Revista: Aerospace

 
Rohit Mittal, Geeta Rani, Vibhakar Pathak, Sonam Chhikara, Vijaypal Singh Dhaka, Eugenio Vocaturo and Ester Zumpano    
The automation industry faces the challenge of avoiding interference with obstacles, estimating the next move of a robot, and optimizing its path in various environments. Although researchers have predicted the next move of a robot in linear and non-line... ver más
Revista: Computers

 
Jose Antonio Carballo, Javier Bonilla, Jesús Fernández-Reche, Bijan Nouri, Antonio Avila-Marin, Yann Fabel and Diego-César Alarcón-Padilla    
Due to the need to know the availability of solar resources for the solar renewable technologies in advance, this paper presents a new methodology based on computer vision and the object detection technique that uses convolutional neural networks (Effici... ver más
Revista: Algorithms

 
Wei Chen, Gongliu Yang and Yongqiang Tu    
The inertial Navigation Systems/global navigation satellite system (SINS/GNSS) has become a research hotspot in the field of train positioning. However, during a uniform straight-line motion period, the heading misalignment angle of the SINS/GNSS is unob... ver más
Revista: Applied Sciences