Inicio  /  Water  /  Vol: 8 Núm: 12 Par: 0 (2016)  /  Artículo
ARTÍCULO
TITULO

Impact of Climate Change on Drought in the Upstream Yangtze River Region

Guihua Lu    
Hongwei Wu    
Heng Xiao    
Hai He    
Zhiyong Wu    

Resumen

Based on Coupled Model Intercomparison Project Phase 5 (CMIP5) dataset and a variable infiltration capacity (VIC) hydrological model, this study assesses the possible influence of climate change in the upstream region of the Yangtze River on droughts in the future 30 years. Long-term daily soil moisture content were simulated by VIC model at a 50 km × 50 km resolution from 1951 to 2013. Regional historical drought events were then recognized based on soil moisture anomaly percentage index and validated with field data. Five relatively independent representative global circulation models were selected and the outputs of them were downscaled temporally and spatially as the inputs of VIC model for daily soil moisture content simulations both in the period of 1971?2000 for the present-day climate and in the period of 2021?2050 for the future. The results show that the projected annual mean temperature is likely to increase from 1.4 °C to 1.8 °C. The projected change in mean annual precipitation could be increased slightly by 0.6% to 1.3%, but the trend of precipitation change in summer and autumn might be opposite of that. Comparing the drought characteristics values recognized in 1971?2000, seven to eight additional regional drought events are likely to happen in 2021?2050. Drought duration and drought intensity are also likely to extend for 18 d to 25 d and increase by 1.2% to 6.2%, respectively. But, drought area could decrease slightly by 1.3% to 2.7% on average. These changes in drought characteristics values suggest that regional drought could become more severely prolonged and frequent in future.

 Artículos similares

       
 
R. J. Roosien, M. N. A. Lim, S. M. Petermeijer and W. F. Lammen    
To reduce the carbon footprint of transport, policymakers are simultaneously stimulating cleaner vehicles and more sustainable mobility choices, such as a shift to rail for short-haul flights within Europe. The purpose of this study is to determine the c... ver más
Revista: Aerospace

 
Amin Habibi and Nafise Kahe    
This study investigates how permeable and cool pavements, green roofs, and living walls affect microclimatic conditions and buildings? energy consumption in an arid urban setting: Shiraz. The study aims to evaluate the role of green infrastructure in mit... ver más
Revista: Buildings

 
Gerardo Colín-García, Enrique Palacios-Vélez, Adolfo López-Pérez, Martín Alejandro Bolaños-González, Héctor Flores-Magdaleno, Roberto Ascencio-Hernández and Enrique Inoscencio Canales-Islas    
Assessing the impact of climate change is essential for developing water resource management plans, especially in areas facing severe issues regarding ecosystem service degradation. This study assessed the effects of climate change on the hydrological ba... ver más
Revista: Hydrology

 
Bounhome Kimmany, Supattra Visessri, Ponleu Pech and Chaiwat Ekkawatpanit    
This study evaluated the impacts of climate change on hydro-meteorological droughts in the Chao Phraya River Basin (CPRB), Thailand under two Representative Concentration Pathway (RCP) scenarios (RCP4.5 and RCP8.5). We used three Reginal Climate Models (... ver más
Revista: Water

 
Elisabeth Fassbender, Josef Rott and Claudia Hemmerle    
Cities face the consequences of climate change, specifically the urban heat island (UHI) effect, which detrimentally affects human health. In this regard, deploying PV modules in urban locales prompts inquiry into the impact of energy-active building com... ver más
Revista: Buildings