Resumen
Various multivariate methods were used to analyze datasets of river water quality for 11 variables measured at 20 different sites surrounding Lake Taihu from 2006 to 2010 (13,200 observations), to determine temporal and spatial variations in river water quality and to identify potential pollution sources. Hierarchical cluster analysis (CA) grouped the 12 months into two periods (May to November, December to the next April) and the 20 sampling sites into two groups (A and B) based on similarities in river water quality characteristics. Discriminant analysis (DA) was important in data reduction because it used only three variables (water temperature, dissolved oxygen (DO) and five-day biochemical oxygen demand (BOD5)) to correctly assign about 94% of the cases and five variables (petroleum, volatile phenol, dissolved oxygen, ammonium nitrogen and total phosphorus) to correctly assign >88.6% of the cases. In addition, principal component analysis (PCA) identified four potential pollution sources for Clusters A and B: industrial source (chemical-related, petroleum-related or N-related), domestic source, combination of point and non-point sources and natural source. The Cluster A area received more industrial and domestic pollution-related agricultural runoff, whereas Cluster B was mainly influenced by the combination of point and non-point sources. The results imply that comprehensive analysis by using multiple methods could be more effective for facilitating effective management for the Lake Taihu Watershed in the future.