Resumen
A series of experimental flow tests for artificial block-in-matrix-soils (bimsoils) samples with various slenderness ratios were performed to study the Non-Darcy groundwater flow characteristics. The variations of seepage velocity, permeability coefficient, critical sample height, and non-Darcy flow factor for samples against slenderness ratios were investigated. A servo-controlled flow testing system that was developed by the authors was adopted to conduct the flow test. Cylindrical bimsoil samples (50 mm diameter and various heights) with staggered rock block percentages (RBPs) (30, 40, 50, and 60%, by mass) were prepared by compaction tests to roughly insure the same porosity of the soil matrix. The testing results show that flow the distance has a strong influence on the flow characteristics of bimsoil, and the relationship between the permeability coefficient and slenderness ratio is proposed. In addition, the critical sample height to eliminate the slenderness effect was determined, and the relationship between the critical sample height and RBP was established. Moreover, the responses of non-Darcy flow were studied by using an index of non-Darcy ßfactor, which reveals the internal mechanism of the effect of flow distance on groundwater flow characteristics. The research results can be useful to the prediction of flow piping disaster for geological body made up of bimsoils.