Resumen
In this paper, we used a freeform lens in a long-wave, un-cooled, refractive infrared (IR) thermal imager and present the design strategy and test results. This optical system is composed of only one freeform lens and several spheres. It can correct the distortion issue inherent to wide field-of-view systems more effectively, and achieve a better thermal imaging performance simultaneously compared to traditional aspheric optical lenses. Such a design model can alleviate the calculation load and cater for the demand of the ultra-precision turning on single crystal germanium. It satisfies the design idea of freeform surfaces with machining feasibility. The refractive freeform IR imager can be realized from the theoretical design to the engineering applications. The research contents of this paper are helpful for the further application of the freeform lens to a more complex cooled infrared refractive thermal imager.