Inicio  /  Water  /  Vol: 9 Núm: 3 Par: 0 (2017)  /  Artículo
ARTÍCULO
TITULO

Optimization of Bioelectricity Generation in Constructed Wetland-Coupled Microbial Fuel Cell Systems

Hailiang Song    
Shuai Zhang    
Xizi Long    
Xiaoli Yang    
Hua Li    
Wenli Xiang    

Resumen

Constructed wetland-coupled microbial fuel cell systems (CW-MFCs) incorporate an aerobic zone and an anaerobic zone to generate electricity that achieves the oxidative degradation of contaminants. However, there are few reports on the performance of such coupled systems. In this study, we determined the optimal configuration of CW-MFCs to characterize their electricity generation performance. Based on the results using different levels of dissolved oxygen among the CW-MFCs, we concluded that a 20-cm distance between the anode and cathode produced an optimal removal of chemical oxygen demand (COD) of 94.90% with a 0.15 W/m3 power density, 339.80 O internal resistance, and 0.31% coulombic efficiency. In addition, a COD of 200 mg/L provided greater electricity generation (741 mV open circuit voltage, 0.20 W/m3 power density, 339.80 O internal resistance, and 0.49 mA current) and purification ability (90.45% COD removal) to meet system COD loading limitations than did higher COD values. By adding 50 mM phosphate buffer solution to synthetic wastewater, relatively high conductivity and buffer capacity were achieved, resulting in improvement in electricity generation. These findings highlight important aspects of bioelectricity generation in CW-MFCs.

 Artículos similares

       
 
Marthe S. De Graaff, Hardy Temmink, Grietje Zeeman and Cees J. N. Buisman    
This research describes the feasibility of applying a UASB reactor for the treatment of concentrated black (toilet) water at 25 °C. On average 78% of the influent load of COD at an HRT of 8.7 days was removed. Produced methane can be converted to 56 MJ/p... ver más
Revista: Water