ARTÍCULO
TITULO

A transport modeling of the carbon-nitrogen cycle at Igapó I Lake - Londrina, Paraná State, Brazil - doi: 10.4025/actascitechnol.v34i2.11792

Suellen Ribeiro Pardo    
Paulo Laerte Natti    
Neyva Maria Lopes Romeiro    
Eliandro Rodrigues Cirilo    

Resumen

This work is a contribution to a better understanding of the effect that domestic sewage discharges may cause in a water body, specifically at Igapó I Lake, in Londrina, Paraná State, Brazil. The simulation of the dynamics of pollutant concentrations throughout the water body was conducted by means of structured discretization of the geometry of Igapó I Lake, together with the finite differences and the finite elements methods. Firstly, the hydrodynamic flow (without the pollutants), modeled by Navier-Stokes and pressure equations, was numerically resolved by the finite differences method, and associated with the fourth order Runge-Kutta procedure. After that, by using the hydrodynamic field velocity, the flow of the reactive species (pollutants) was described through a reaction transport model, restricted to the carbon-nitrogen cycle. The reaction transport model was numerically resolved by the stabilized finite elements method, by means of a semi-discrete formulation. A qualitative analysis of the numerical simulations provided a better understanding of the dynamics of the processes involved in the flow of the reactive species, such as the dynamics of the nitrification process, of the biochemical demand of oxygen and of the level of oxygen dissolved in the water body at Igapó I Lake.

 Artículos similares

       
 
Aikaterini Lyra, Athanasios Loukas, Pantelis Sidiropoulos and Lampros Vasiliades    
This study presents the projected future evolution of water resource balance and nitrate pollution under various climate change scenarios and climatic models using a holistic approach. The study area is Almyros Basin and its aquifer system, located in Ce... ver más
Revista: Water

 
Bohyeon Hwang, Kideok Do and Sungyeol Chang    
Constant changes occur in coastal areas over different timescales, requiring observation and modeling. Specifically, modeling morphological changes resulting from short-term events, such as storms, is of great importance in coastal management. Parameter ... ver más

 
Zhengwei Wang, Haitao Gu, Jichao Lang and Lin Xing    
This study verifies the effects of deployment parameters on the safe separation of Autonomous Underwater Vehicles (AUVs) and mission payloads. The initial separation phase is meticulously modeled based on computational fluid dynamics (CFD) simulations em... ver más

 
Gaoan Zheng, Pu Xu, Lin Li and Xinghua Fan    
The pipeline system is widely used in marine engineering, and the formation mechanism and flow patterns of two-phase slug flows are of great significance for the optimal design of and vibration prevention in a complex pipeline system. Aiming at the above... ver más

 
Sergejus Lebedevas and Edmonas Mila?ius    
The decarbonization of maritime transport has become a crucial strategy for the adoption of renewable low-carbon fuels (LCFs) (MARPOL 73/78 (Annex VI) and COM (2021) 562-final 2021/0210 (COD)). In 2018, 98% of operated marine diesel engines ran on fossil... ver más