Inicio  /  Energies  /  Vol: 6 Núm: 3Pages1 Par: March (2013)  /  Artículo
ARTÍCULO
TITULO

Impact of Furfural on Rapid Ethanol Production Using a Membrane Bioreactor

Päivi Ylitervo    
Carl Johan Franzén and Mohammad J. Taherzadeh    

Resumen

A membrane bioreactor was developed to counteract the inhibition effect of furfural in ethanol production. Furfural, a major inhibitor in lignocellulosic hydrolyzates, is a highly toxic substance which is formed from pentose sugars released during the acidic degradation of lignocellulosic materials. Continuous cultivations with complete cell retention were performed at a high dilution rate of 0.5 h-1. Furfural was added directly into the bioreactor by pulse injection or by addition into the feed medium to obtain furfural concentrations ranging from 0.1 to 21.8 g L-1. At all pulse injections of furfural, the yeast was able to convert the furfural very rapidly by in situ detoxification. When injecting 21.8 g L-1 furfural to the cultivation, the yeast converted it by a specific conversion rate of 0.35 g g-1 h-1. At high cell density, Saccharomyces cerevisiae could tolerate very high furfural levels without major changes in the ethanol production. During the continuous cultures when up to 17.0 g L-1 furfural was added to the inlet medium, the yeast successfully produced ethanol, whereas an increase of furfural to 18.6 and 20.6 g L-1 resulted in a rapidly decreasing ethanol production and accumulation of sugars in the permeate. This study show that continuous ethanol fermentations by total cell retention in a membrane bioreactor has a high furfural tolerance and can conduct rapid in situ detoxification of medium containing high furfural concentrations.