ARTÍCULO
TITULO

Short-term Forecasting of Intermodal Freight Using ANNs and SVR: Case of the Port of Algeciras Bay

J.A. Moscoso-López    
I.J. Turias Turias    
M.J. Come    
J.J. Ruiz-Aguilar    
M. Cerbán    

Resumen

Forecasting of future intermodal traffic demand is very important for decision making in ports operations management. The use of accurate prediction tools is an issue that awakens a lot of interest among transport researchers. Intermodal freight forecasting plays an important role in ports management and in the planning of the principal port activities. Hence, the study is carried out under the motivation of knowing that modeling the freight transport flows could facilitate the management of the infrastructure and optimize the resources of the ports facilities. The use of advanced models for freight forecasting is essential to improve the port level-service and competitiveness. In this paper, two forecasting-models are presented and compared to predict the freight volume. The models developed and tested are based on Artificial Neural Networks and Support Vector Machines. Both techniques are based in a historical data and these methods forecast the daily weight of the freight with one week in advance. The performance of the models is evaluated on real data from Ro-Ro freight transport in the Port of Algeciras Bay. This work proposes and compares different approaches to determine the best prediction. In order to select the best model a multicomparison procedure is developed using several statistical test. The results of the assessed models show a promising tool to predict Ro-Ro transport flows with accuracy.

 Artículos similares

       
 
Hu Cai, Jiafu Wan and Baotong Chen    
Traditional capacity forecasting algorithms lack effective data interaction, leading to a disconnection between the actual plan and production. This paper discusses the multi-factor model based on a discrete manufacturing workshop and proposes a digital ... ver más
Revista: Applied Sciences

 
Zhiqiang Jiang, Yongyan Ma and Weijia Li    
Accurate forecasting of ship motion is of great significance for ensuring maritime operational safety and working efficiency. A data-driven ship motion forecast method is proposed in this paper, aiming at the problems of low generalization of a single fo... ver más

 
Qian Liu, Xiaofeng Zhao, Jing Zou, Yunzhou Li, Zhijin Qiu, Tong Hu, Bo Wang and Zhiqian Li    
The Coupled Ocean?Atmosphere?Wave?Sediment Transport (COAWST) model serves as the foundation for creating a forecast model to detect lower atmospheric ducts in this study. A set of prediction tests with different forecasting times focusing on the South C... ver más

 
Francisca Lanai Ribeiro Torres, Luana Medeiros Marangon Lima, Michelle Simões Reboita, Anderson Rodrigo de Queiroz and José Wanderley Marangon Lima    
Streamflow forecasting plays a crucial role in the operational planning of hydro-dominant power systems, providing valuable insights into future water inflows to reservoirs and hydropower plants. It relies on complex mathematical models, which, despite t... ver más
Revista: Water

 
Louis Closson, Christophe Cérin, Didier Donsez and Jean-Luc Baudouin    
This paper aims to provide discernment toward establishing a general framework, dedicated to data analysis and forecasting in smart buildings. It constitutes an industrial return of experience from an industrialist specializing in IoT supported by the ac... ver más
Revista: Information