Resumen
Bark microrelief (BM), or the spatial patterning of bark texture, is an important bark characteristic shown to significantly affect the ecophysiological functioning of forest ecosystems. BM influences bark micrometeorological conditions and stemflow generation which, in turn, impacts epiphytic vegetation and microbial community patterns, as well as insect foraging behavior. Thus, an objective method to quantify BM is important to understand and model hydro-biogeochemical processes in forest canopy ecosystems. The aim of this study was to develop a method for fast and automated imaging of bark surface morphology. Three-dimensional imaging methods using laser triangulation were used to describe BM. An automated system was developed and applied to calculate three new BM indices for samples collected from five trees representing species common throughout Poland (and Northern Europe): common oak, European ash, trembling aspen, Scots pine, and black alder. These new BM indices may be useful for characterizing and quantitatively relating BM to forest canopy ecophysiological functions.