Resumen
The use of geotextile filters has been a common application in geo-environmental and geotechnical engineering for decades. The purpose of the present paper is to assess the influence of artificial physical clogging and cyclic water flow on the water permeability characteristics of nonwoven geotextiles used commonly in filter and drainage systems. Despite many studies examining the behavior of soil-geosynthetics, the mechanism of physical clogging is not fully understood yet and remains incompletely defined. Artificial clogging and cyclic water flow tests have been conducted according to a procedure created by the authors. Three nonwoven geotextiles and silty sand were employed in the test series. Hydraulic properties of the tested geosynthetics were determined according to the ISO standard. Filter design criteria are also discussed. The paper also presents the changes of water permeability characteristics due to clogging and cyclic water flow. The results show significant decrease of water permeability coefficients of the tested nonwoven geotextiles after artificial clogging and under cyclic water flow. Furthermore, the clogging mechanism was observed and confirmed by three-dimensional computed tomography.