Resumen
Expolitation of coalbed methane (CBM) involves production of a massive amount saline water that needs to be properly managed for environmental protection. In this study, direct contact membrane distillation (DCMD) was utilized for treatment of CBM-produced water to remove saline components in the water. Simulated CBM waters containing varying concentrations of NaCl (1, 20, and 500 mM) and NaHCO3 (1 and 25 mM) were used as feed solutions under two transmembrane temperatures (?40 and 60 °C). In short-term distillation (~360 min), DCMD systems showed good performance with nearly 100% removal of salts for all solutes concentrations at both temperatures. The permeate flux increased with the feed temperature, but at a given temperature, it remained fairly stable throughout the whole operation. A gradual decline in permeate flux was observed at ?60 °C at high NaHCO3 concentration (25 mM). In long-term distillation (5400 min), the presence of 25 mM NaHCO3 further decreased the flux to 25%?35% of the initial value toward the end of the operation, likely due to membrane fouling by deposition of Ca-carbonate minerals on the pore openings. Furthermore, pore wetting by the scalants occurred at the end of the experiment, and it increased the distillate conducitivity to 110 µS·cm-1. The precipitates formed on the surface were dominantly CaCO3 crystals, identified as aragonite.