Resumen
This paper presents a lifting wavelet transform (LWT)-based blind audio watermarking scheme designed for tampering detection and self-recovery. Following 3-level LWT decomposition of a host audio, the coefficients in selected subbands are first partitioned into frames for watermarking. To suit different purposes of the watermarking applications, binary information is packed into two groups: frame-related data are embedded in the approximation subband using rational dither modulation; the source-channel coded bit sequence of the host audio is hidden inside the and -detail subbands using -ary adaptive quantization index modulation. The frame-related data consists of a synchronization code used for frame alignment and a composite message gathered from four adjacent frames for content authentication. To endow the proposed watermarking scheme with a self-recovering capability, we resort to hashing comparison to identify tampered frames and adopt a Reed?Solomon code to correct symbol errors. The experiment results indicate that the proposed watermarking scheme can accurately locate and recover the tampered regions of the audio signal. The incorporation of the frame synchronization mechanism enables the proposed scheme to resist against cropping and replacement attacks, all of which were unsolvable by previous watermarking schemes. Furthermore, as revealed by the perceptual evaluation of audio quality measures, the quality degradation caused by watermark embedding is merely minor. With all the aforementioned merits, the proposed scheme can find various applications for ownership protection and content authentication.