Resumen
Environmental safety problem originated from vehicles requires development and exploration of integrated and effective solutions, which considers the development level of technologies, the cost of their widespread use, the legislation requirements and other relevant aspects. One improvement method of the petroleum-derived fuels characteristics is the use of additives that complement the refining methods and provide ample opportunities to influence the individual characteristics. The aim of this work is to study the influence of the developed multifunctional surface-active nano-additive on the gasoline characteristics and engine performance. The measurement results confirmed the effective reduction of the surface tension of gasoline at the boundary with air, improving the mixture formation in the engine. On the other hand, the saturated vapor pressure was significantly decreased, which dramatically reduces evaporation losses and air pollution by light hydrocarbons. The use of the additive, due to a combination of its surface-active and catalytic action, significantly increases the fuel efficiency of engines and reduces octane requirements, greenhouse gases emissions, as well as noise level during operation of vehicles, and the environmental safety of vehicle operation increases.