Resumen
Observation of the ambient aerosol surface area concentrations is important to understand the aerosol toxicity because an increased surface area may be able to act as an enhanced reaction interface for certain reactions between aerosol particles and biological cells, as well as an extended surface for adsorbing and carrying co-pollutants that are originally in gas phase. In this study, the concentration of aerosol surface area was measured from April 2015 to March 2016 in Fukuoka, Japan. We investigated the monthly and diurnal variations in the correlations between the aerosol surface area and black carbon (BC) and sulfate concentrations. Throughout the year, aerosol surface area concentration was strongly correlated with the concentrations of BC, which has a relatively large surface area since BC particles are usually submicron agglomerates consisting of much smaller (tens of nanometers) sized primary soot particles. The slopes of the regression between the aerosol surface area and BC concentrations was highest in August and September 2015. We presented evidence that this was caused by an increase in the proportion of airmasses that originated on the main islands of Japan. This may enhance the introduction of the BC to Fukuoka from the main islands of Japan which we hypothesize to be relatively fresh or ?uncoated?, thereby maintaining its larger surface area.