Inicio  /  Atmósfera  /  Vol: 28 Núm: 2 Par: 0 (2015)  /  Artículo
ARTÍCULO
TITULO

SPATIAL, TEMPORAL AND SIZE DISTRIBUTION OF PARTICULATE MATTER AND ITS CHEMICAL CONSTITUENTS IN FAISALABAD, PAKISTAN

Wasim Javed    
Anthony S. Wexler    
Ghulam Murtaza    
Hamaad R. Ahmad    
Shahzad M. A. Basra    

Resumen

Spatial and temporal variations in aerosol particulate matter (PM) were investigated for distribution over the four seasons of chemical constituents and particle size fractions in Faisalabad, Pakistan from June 2012 to April 2013. At nine sampling sites, four PM mass size fractions (total suspended particulates [TSP], PM10, PM4and PM2.5) were monitored; simultaneously, TSP mass samples were collected on glass fiber filters using a high volume air sampler. TSP samples (144) were subjected to quantitative chemical analyses for determining trace elements (Pb, Cd, Ni, Zn, Cu, Fe) using atomic absorption spectroscopy, and water-soluble cations (Ca2+, Mg2+, Na+, K+, NH4+) and anions (Cl?, SO42?and NO3?) by ion chromatography. The highest PM mass concentrations were observed at industrial sites, while they were somewhat lower in major road intersections and lowest in the remote background site. It was also observed that PM mass concentrations were about two to 20 times higher than the standard limits of the World Health Organization and the US Environmental Protection Agency. Coarse particles (TSP, PM10and PM4) were found to be highest during the summer, while relatively fine particles (PM2.5) were higher during the winter period. Concentrations of all size fractions were lowest during the monsoon sampling period at all sites. Concentrations of different elements and water-soluble ions also followed the similar temporal pattern as PM mass concentrations. The crustal elements Ca, Fe, Mg and Na were the largest contributors to TSP mass while elements of anthropogenic origin (Pb, Cd, Ni, Cu and Zn) had relatively lower concentrations and also showed a high spatial variation. Among the anions, sulfate (SO42?) was the predominant species contributing to 50-60% of the total anion concentration. It was found that rainfall, wind speed and relative humidity were the most important meteorological factors affecting PM concentrations. The evaluation of data presented in this paper will serve as a basis for future regional modeling and source apportionment. 

Palabras claves

 Artículos similares

       
 
Xiang Liu, Jin Zhang, Wenqing Shi, Min Wang, Kai Chen and Li Wang    
Understanding the drivers of macroinvertebrate community structure is fundamental for adequately controlling pollutants and managing ecosystems under global change. In this study, the abundance and diversity of benthic macroinvertebrates, as well as thei... ver más
Revista: Water

 
Beata Ferencz, Magdalena Toporowska and Jaroslaw Dawidek    
Due to global warming and increasing water eutrophication, understanding in-lake relationships is paramount to prevent excessive pollution and further negative changes in lakes. The physico-chemical and biological parameters, as well as nutrient variabil... ver más
Revista: Water

 
Zhaoxin Wang, Tiejun Wang and Yonggen Zhang    
Knowledge of both state (e.g., soil moisture) and flux (e.g., actual evapotranspiration (ETa) and groundwater recharge (GR)) hydrological variables across vadose zones is critical for understanding ecohydrological and land-surface processes. In this stud... ver más
Revista: Water

 
Jae Young Seo and Sang-Il Lee    
Drought is a complex phenomenon caused by lack of precipitation that affects water resources and human society. Groundwater drought is difficult to assess due to its complexity and the lack of spatio-temporal groundwater observations. In this study, we p... ver más
Revista: Water

 
Saher Ayyad, Islam S. Al Zayed, Van Tran Thi Ha and Lars Ribbe    
Monitoring of crop water consumption, also known as actual evapotranspiration (ETa), is crucial for the prudent use of limited freshwater resources. Remote-sensing-based algorithms have become a popular approach for providing spatio-temporal information ... ver más
Revista: Water