Inicio  /  Water  /  Vol: 10 Núm: 3 Par: 0 (2018)  /  Artículo
ARTÍCULO
TITULO

Uncertainty Analysis of a Two-Dimensional Hydraulic Model

Khalid Oubennaceur    
Karem Chokmani    
Miroslav Nastev    
Marion Tanguy and Sebastien Raymond    

Resumen

A reliability approach referred to as the point estimate method (PEM) is presented to assess the uncertainty of a two-dimensional hydraulic model. PEM is a special case of numerical quadrature based on orthogonal polynomials, which evaluates the statistical moments of a performance function involving random variables. When applied to hydraulic problems, the variables are the inputs to the hydraulic model, and the first and second statistical moments refer to the mean and standard deviation of the model?s output. In providing approximate estimates of the uncertainty, PEM appears considerably simpler and requires less information and fewer runs than standard Monte Carlo methods. An example of uncertainty assessment is shown for simulated water depths in a 46 km reach of the Richelieu River, Canada. The 2D hydraulic model, H2D2, was used to solve the shallow water equations. Standard deviations around the mean water depths were estimated by considering the uncertainties of three main input variables: flow rate, Manning?s coefficient and topography. Results indicate that the mean standard deviation is <27 cm for the considered flow rates of 759, 824, 936, 1113 m3/s . Higher standard deviations were obtained upstream of the topographic shoal at the municipality of Saint-Jean-sur-Richelieu. The PEM method adds further value to the H2D2 model predictions as it indicates the magnitude and the spatial variation in uncertainties. The effort required to complete an uncertainty analysis using the PEM method is minimal and the resulting insight is meaningful. This knowledge should be incorporated into decision-making in the context of flood risk assessment.

 Artículos similares

       
 
Fupeng Liu, Jiandong Ma, Zhongzhi Ye, Lijia Wang, Yu Sun, Jianxing Yu, Yuliang Qin, Dongliang Zhang, Wengang Cai and Hao Li    
The reliability of liquefied natural gas (LNG) storage tanks is an important factor that must be considered in their structural design. Concrete is a core component of LNG storage tanks, and the geometric uncertainty of concrete aggregate material has a ... ver más

 
Jacek G. Puchalski, Janusz D. Fidelus and Pawel Fotowicz    
One of the fundamental challenges in analyzing wind turbine performance is the occurrence of torque creep under load and without load. This phenomenon significantly impacts the proper functioning of torque transducers, thus necessitating the utilization ... ver más
Revista: Algorithms

 
Kyohei Hanazaki and Wataru Yamazaki    
Busemann?s supersonic biplane airfoil can reduce wave drag through shock interactions at its designed freestream Mach number. However, a choking phenomenon occurs with a decrease in the freestream Mach number, and the drag coefficient increases significa... ver más
Revista: Aerospace

 
Uxia Garcia-Luis, Alejandro M. Gomez-San-Juan, Fermin Navarro-Medina, Carlos Ulloa-Sande, Alfonso Yñigo-Rivera and Alba Eva Peláez-Santos    
The integration of uncertainty analysis methodologies allows for improving design efficiency, particularly in the context of instruments that demand precise pointing accuracy, such as space telescopes. Focusing on the VINIS Earth observation telescope de... ver más
Revista: Aerospace

 
Kate Carlson, Barbara P. Buttenfield and Yi Qiang    
Quantification of all types of uncertainty helps to establish reliability in any analysis. This research focuses on uncertainty in two attribute levels of wetland classification and creates visualization tools to guide analysis of spatial uncertainty pat... ver más