ARTÍCULO
TITULO

Comparing univariate techniques for tender price index forecasting: Box-Jenkins and neural network model

Olalekan Oshodi    
Obuks Augustine Ejohwomu    
Ibukun Oluwadara Famakin    
Paulo Cortez    

Resumen

The poor performance of projects is a recurring event in the construction sector. Information gleaned from literature shows that uncertainty in project cost is one of the significant causes of this problem. Reliable forecast of construction cost is useful in mitigating the adverse effect of its fluctuation, however the availability of data for the development of multivariate models for construction cost forecasting remains a challenge. The study seeks to investigate the reliability of using univariate models for tender price index forecasting. Box-Jenkins and neural network are the modelling techniques applied in this study. The results show that the neural network model outperforms the Box-Jenkins model, in terms of accuracy. In addition, the neural network model provides a reliable forecast of tender price index over a period of 12 quarters ahead. The limitations of using the univariate models are elaborated. The developed neural network model can be used by stakeholders as a tool for predicting the movements in tender price index. In addition, the univariate models developed in the present study are particularly useful in countries where limited data reduces the possibility of applying multivariate models.

 Artículos similares

       
 
Gulsum Alicioglu and Bo Sun    
Deep learning (DL) models have achieved state-of-the-art performance in many domains. The interpretation of their working mechanisms and decision-making process is essential because of their complex structure and black-box nature, especially for sensitiv... ver más
Revista: AI

 
Michiel van der Vlag, Lionel Kusch, Alain Destexhe, Viktor Jirsa, Sandra Diaz-Pier and Jennifer S. Goldman    
Global neural dynamics emerge from multi-scale brain structures, with nodes dynamically communicating to form transient ensembles that may represent neural information. Neural activity can be measured empirically at scales spanning proteins and subcellul... ver más
Revista: Applied Sciences

 
Qianyang Li and Xingjun Zhang    
For time series forecasting, multivariate grey models are excellent at handling incomplete or vague information. The GM(1, N) model represents this group of models and has been widely used in various fields. However, constructing a meaningful GM(1, N) mo... ver más
Revista: Applied Sciences

 
Wen Tian, Yining Zhang, Ying Zhang, Haiyan Chen and Weidong Liu    
To fully leverage the spatiotemporal dynamic correlations in air traffic flow and enhance the accuracy of traffic flow prediction models, thereby providing a more precise basis for perceiving congestion situations in the air route network, a study was co... ver más
Revista: Aerospace

 
Nils Hütten, Miguel Alves Gomes, Florian Hölken, Karlo Andricevic, Richard Meyes and Tobias Meisen    
Quality assessment in industrial applications is often carried out through visual inspection, usually performed or supported by human domain experts. However, the manual visual inspection of processes and products is error-prone and expensive. It is ther... ver más