Inicio  /  Applied Sciences  /  Vol: 8 Núm: 3 Par: March (2018)  /  Artículo
ARTÍCULO
TITULO

Numerical and Experimental Study on Multi-Focal Metallic Fresnel Zone Plates Designed by the Phase Selection Rule via Virtual Point Sources

Jinseob Kim    
Hyuntai Kim    
Gun-Yeal Lee    
Juhwan Kim    
Byoungho Lee and Yoonchan Jeong    

Resumen

We propose a novel design method for multi-focal metallic Fresnel zone plates (MFZPs), which exploits the phase selection rule by putting virtual point sources (VPSs) at the desired focal points distant to the MFZP plane. The phase distribution at the MFZP plane reciprocally formed by the VPSs was quantized in a binary manner based on the phase selection rule, thereby leading to a corresponding on-off amplitude pattern for the targeted MFZP. The resultant phase distribution was dependent on the complex amplitudes of the VPSs, so that they could be determined from the perspective of both multi-focal functionality and fabrication feasibility. As a typical example, we utilized the particle swarm optimization algorithm to determine them. Based on the proposed method, we designed and numerically analyzed two types of novel MFZPs?one for a monochromatic multi-focal application and the other for a multi-chromatic mono-focal application?verifying the effectiveness and validity of the proposed method. We also fabricated them onto Au-deposited glass substrates, using electron beam evaporation and a focused ion beam milling process. We experimentally characterized them and also verified that they successfully demonstrated their feasibilities. The former produced distinct hot spots at three different focal distances of 10, 15, and 20 µ m for monochromatic incidence at 650 nm, and the latter produced a single hot spot at a focal distance of 15 µ m for multi-chromatic incidence at 660, 532, and 473 nm. The experimental results were also in good agreement with their corresponding numerical results. We expect that both MFZPs will have various applications, such as laser micromachining, optical trapping, biomedical sensing, confocal collimation, achromatic optics, etc.

 Artículos similares

       
 
Bicheng Zhou, Anatoly V. Brouchkov and Jiabo Hu    
Frost heaving in soils is a primary cause of engineering failures in cold regions. Although extensive experimental and numerical research has focused on the deformation caused by frost heaving, there is a notable lack of numerical investigations into the... ver más
Revista: Water

 
Abdul Basit, Safeer Abbas, Muhammad Mubashir Ajmal, Ubaid Ahmad Mughal, Syed Minhaj Saleem Kazmi and Muhammad Junaid Munir    
This study undertakes a comprehensive experimental and numerical analysis of the structural integrity of buried RC sewerage pipes, focusing on the performance of two distinct jointing materials: cement mortar and non-shrinkage grout. Through joint shear ... ver más
Revista: Infrastructures

 
Mengxiang Li, Guo Wang, Kun Liu, Yue Lu and Jiaxia Wang    
The safety assessment of ship cargo securing systems is of significant importance in preventing casualties, vessel instability, and economic losses resulting from the failure of securing systems during transportation in adverse sea conditions. In this st... ver más

 
Annie Rose Elizabeth, Sumit Sarma, T. Jayachandran, P. A. Ramakrishna and Mondeep Borthakur    
Multiple applications in aerospace utilize pyrotechnic charges for their operation, and these charges are predominantly in the form of granules. One of the most used charges is boron potassium nitrate (BPN), and the present study focuses on mathematicall... ver más
Revista: Aerospace

 
Zhenlong Wu, Tianyu Zhang, Yuan Gao and Huijun Tan    
In this paper, a novel small-scale gust generator research facility was designed and examined for generating Sears-type gusts. The design scheme, integration with the wind tunnel, experiment and validation of its capability are presented in detail. To he... ver más
Revista: Aerospace