Resumen
Road networks often carry more than 80% of a country's total passenger-km and over 50% of its freight ton-km according to the World Bank. Efficient maintenance of road networks is highly important. Road asset management, which is essential for maintenance programs, consist of monitoring, assessing and decision making necessary for maintenance, repair and/or replacement. This process is highly dependent on adequate and timely pavement condition data. Current practice for collecting and analysing such data is 99% manual. To optimize this process, research has been performed towards automation. Several methods to automatically detect road assets and pavement conditions are proposed. In this paper, we present an analysis of the current state of practice of road asset monitoring, a discussion of the limitations, and a qualitative evaluation of the proposed automation methods found in the literature. The objective of this paper is to understand the issues associated with current processes, and assess the available tools to address these problems. The current state of practice is categorized into: 1) type of data collected; 2) type of asset covered and 3) amount of information provided. The categories are evaluated in terms of a) accuracy; b) applicability (efficiency); c) cost; and d) overall improvement to current practice. Despite the methods available, the outcome of the study indicates that current condition monitoring lacks efficiency, and none provide a holistic solution to the problem of road asset condition monitoring.