Resumen
Traditional adaptive filtering algorithms are non-recursive systems that cannot use a time-variant reference input in real time and are not appropriate for control signals with uncertainties and unanticipated conditions. The main purpose of this research is to design novel adaptive digital filtering algorithms based on internal model control (IMC). The new methods consist of a process model for the target plant so as to estimate its dynamic behavior for active vibration and noise attenuation schemes in order to improve the stability, robustness, and tracking performance. On the basis of on the existing least mean squares, the methods are combined with an internal model controller, or the whole adaptive filtering system could become a feedback control system structure based on IMC. The performances were validated in numerical simulations with various conditions that could have happened in realistic applications, and the results were compared with the original algorithms. This study shows that the active noise and vibration systems that are applied to vehicles, mechanical systems, and other targets are enhanced through improving the performance of conventional adaptive filtering algorithms and by using internal model control effectively.