Inicio  /  Atmósfera  /  Vol: 15 Núm: 1 Par: 0 (2002)  /  Artículo
ARTÍCULO
TITULO

Numerical experiments on geostrophic adjustment

A. WIIN NIELSEN    

Resumen

The well known geostrophic adjustment problem has been reinvestigated using first a model of a homogeneous atmosphere with a free surface. The basic equations in this model are the two equations of motion for the horizontal velocity components modified to contain only the east-west variations and the continuity equation treated in the same way. A linear frictional term is included in the equations, and the forcing of the model atmosphere is included in the continuity equation. The zonal case is described in Sections 2 and 3. The equations are integrated numerically from an initial state of rest and a horizontal upper surface. If geostrophic adjustment should be obtained, the zonal velocity components should be small, while the meridional velocity components should be in approximate balance with the geostrophic component computed from the zonal geopotential gradient. It is found by integrating the equations for 20 days that the above requirements are satisfied. The numerical integrations of the set of primitive equations are carried out in wave number space, but the results are presented as continuous variations in the west-east directions. It is shown that geostrophic adjustment is reach after a couple of days. The final state of the adjustment process is obtained using several specifications of the forcing. While the final states naturally are different, the geostrophic adjustment is found in each case. A case based on full Fourier series is also included in Section 3. The adjustment problem is also treated in the meridional case in section 4 and 5 using the same strategy as described above. Section 6 contains a solution of the adjustment problem using a two-level, primitive equation model maintaining only the variations in the zonal direction.

 Artículos similares

       
 
Hui Li, Yi-Kun Ba, Ning Zhang, Yong-Jian Liu and Wei Shi    
In regions with severe cold and high latitudes, concrete structures are susceptible to cracking and displacement due to uneven temperature stress, which directly impacts their normal utilization. Therefore, to investigate the temperature distribution cha... ver más
Revista: Applied Sciences

 
Tomasz Rogala, Mateusz Scieszka, Andrzej Katunin and Sandris Rucevskis    
Increasingly often, due to the high sensitivity level of diagnostic systems, they are also sensitive to the occurrence of a significant number of false alarms. In particular, in structural health monitoring (SHM), the problem of optimal sensor placement ... ver más
Revista: Applied Sciences

 
Yixiao Li, Fang Zhang and Jinhui Jiang    
Dynamic load localization and identification technology is very important in the structural design and optimization of aircraft. This paper proposes a non-global traversal method (NTM) for the fast positioning and recognition of dynamic loads on continuo... ver más
Revista: Aerospace

 
Minkeon Lee, Seunghyeon Yu, Kybeom Kwon, Myungshin Lee, Junghyun Lee and Heungseob Kim    
Satellites have been developed and operated for various purposes. The global satellite market is growing rapidly as the number of satellites and their mission diversity increase. Satellites revolve around the Earth to perform missions and communicate wit... ver más
Revista: Aerospace

 
Mirko Dinulovic, Aleksandar Benign and Bo?ko Ra?uo    
In the present work, the potential application of machine learning techniques in the flutter prediction of composite materials missile fins is investigated. The flutter velocity data set required for different fin aerodynamic geometries and materials is ... ver más
Revista: Aerospace