Inicio  /  Energies  /  Vol: 10 Núm: 6 Par: June (2017)  /  Artículo
ARTÍCULO
TITULO

Separation of CO2 in a Solid Waste Management Incineration Facility Using Activated Carbon Derived from Pine Sawdust

Inés Durán    
Fernando Rubiera and Covadonga Pevida    

Resumen

The selective separation of CO2 from gas mixtures representative of flue gas generated in waste incineration systems is studied on two activated carbons obtained from pine sawdust and compared to a commercial activated carbon. Dynamic adsorption experiments were conducted in a fixed-bed adsorption column using a binary mixture (N2/CO2) with a composition representative of incineration streams at temperatures from 30 to 70 °C. The adsorption behavior of humid mixtures (N2/CO2/H2O) was also evaluated in order to assess the influence of water vapor in CO2 adsorption at different relative humidity in the feed gas: 22% and 60%. Moreover, CO2 adsorption was studied in less favorable conditions, i.e., departing from a bed initially saturated with H2O. In addition, the effect of CO2 on H2O adsorption was examined. Experimental results showed that the CO2 adsorption capacity can be reduced significantly by the adsorption of H2O (up to 60% at high relative humidity conditions). On the other hand, the breakthrough tests over the adsorbent initially saturated with water vapor indicated that H2O is little affected by CO2 adsorption. The experimental results pointed out the biomass based carbons as best candidates for CO2 separation under incineration flue gas conditions.