Inicio  /  Energies  /  Vol: 10 Núm: 3 Par: March (2017)  /  Artículo
ARTÍCULO
TITULO

Thermal Stability of Modified Insulation Paper Cellulose Based on Molecular Dynamics Simulation

Chao Tang    
Song Zhang    
Qian Wang    
Xiaobo Wang and Jian Hao    

Resumen

In this paper, polysiloxane is used to modify insulation paper cellulose, and molecular dynamics methods are used to evaluate the glass transition temperature and mechanical properties of the paper before and after the modification. Analysis of the static mechanical performance of the model shows that, with increasing temperature, the elastic modulus of both the modified and unmodified cellulose models decreases gradually. However, the elastic modulus of the modified model is greater than that of the unmodified model. Using the specific volume method and calculation of the mean square displacement of the models, the glass transition temperature of the modified cellulose model is found to be 48 K higher than that of the unmodified model. Finally, the changes in the mechanical properties and glass transition temperature of the model are analyzed by energy and free volume theory. The glass transition temperatures of the unmodified and modified cellulose models are approximately 400 K and 450 K, respectively. These results are consistent with the conclusions obtained from the specific volume method and the calculation of the mean square displacement. It can be concluded that the modification of insulation paper cellulose with polysiloxane will effectively improve its thermal stability.