Resumen
Prior to the 24-26 March 2015 extreme precipitation event that impacted northern Chile, the scenarios for Pleistocene and Holocene wetter paleoclimate intervals in the hyperarid core of the Atacama Desert had been attributed to eastern or southwestern moisture sources. The March 2015 precipitation event offered the first modern opportunity to evaluate a major regional precipitation event relative to those hypothetical paleoclimate scenarios. It was the first opportunity to determine the 18O and 2H composition of a major precipitation event that might eventually be preserved in geological materials. The driver for the March 2015 event was a synoptic-scale weather system, a cutoff cold upper-level low system that traversed the Pacific Ocean at a time of unusually warm temperatures of Pacific surface water. Ground-based precipitation data, stable isotopes in precipitation and river samples, NCEP/NCAR reanalysis atmospheric data and air mass tracking are utilized to connect the Earth surface processes to atmospheric conditions. The d18O and d2H of the precipitation and ephemeral rivers were significantly heavier than the rain, snow and ephemeral rivers fed by more frequent but less voluminous precipitation events registered prior to March 2015. Consistent with the atmospheric analyses, the rain isotopic compositions are typical of a water vapor whose source was at more equatorial latitudes of the Pacific and which moved southward. The late March 2015 system was an unforeseen scenario even for El Niño Pacific ocean conditions. Furthermore, the late summer season warmth led to greater potential for erosion and sediment transport than typical of more common moderate precipitation scenarios which usually include widely distributed snow. A comparison of the March 2015 scenario to the spatial distribution of wetter paleoclimate intervals leads to the hypothesis that the March 2015 scenario likely better fits some parts of the paleoclimate record of the continental interior hyperarid Atacama Desert than do the eastern or southwestern moisture source paleoclimate scenarios deduced previously.